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ABSTRACT 

This paper presents the design of an optimal nonlinear controller for trajectory tracking of a quadrotor helicopter based 
on the well-known sliding mode control method (SMC). To this end, the Lyapunov law analysis has been used regarding 
nonlinear equations of the quadrotor. The proposed control method is characterized by its robustness against 
disturbances and aerodynamic effects. One of the main targets of this study is to develop a nonlinear observer based on 
extended kalmanbucy filter (EKBF) to estimate unmeasured states of the system. In order to optimize the parameters in 
proposed control method, the paper utilizes the genetic algorithm. Finally, simulation results indicate that quadrotor 
UAV with the proposed controller ensures good tracking of a desired trajectory and its robustness against aerodynamic 
effects is better than the other previously presented works. 
Keywords— Quadrotor, Sliding Mode Control, Genetic Algorithm, State Estimation, Extended KalmanBucy Filter 

 
INTRODUCTION 
The quadrotor is an unmanned aerial vehicle (UAV) which has four propellers attached to four motors 
placed on a fixed body to create six strongly coupled output coordinators [1,2]. Nowadays, these UAVs are 
vastly used in various applications at minimal cost and without endangering any risk to human life. UAVs 
are generally suitable for military applications, cartography, surveillance and acquisition of targets. In 
[3,4] authors describe the aerodynamic forces and moments on rotor dynamic of helicopter by 
synthesizing momentum with blade element theory. In [6] the SMC has been applied extensively to 
control quadrotors. A robust second order sliding mode control (SMC) for controlling a quadrotor with 
uncertain parameters presented based on high order sliding mode control (HOSMC) for trajectory 
tracking of a quadrotor helicopter. [7] presents the sliding mode control of a class of under actuated 
systems regarding the quadrotor as a sample model. In [8] the authors use a continuous sliding mode 
control method based on feedback linearization applied to a quadrotor UAV. [9] gives a new robust 
backstepping‐based controller that induces integral sliding modes for the under actuated dynamic model 
of a quadrotor subject to smooth bounded disturbances, consisted of wind gust and aerodynamics effects. 
In [10‐11] the authors present a design method for attitude control of a quadrotor based on sliding mode 
control method in which all sliding surfaces are designed using the Lyapunov stability theory. Other 
methods have also been attempted to achieve good performance [12‐14].  
In a specific problem of a continuous‐time stochastic system, inorder to improve the results, state 
estimation with a nonlinear filter such as Extended Kalman‐Bucy Filter (EKBF) is used which constitutes 
the basis for [15]. [16] designed an EKBF for accurate and robust tracking of targets in an air combat 
scenario. A comparative study on applying modern techniques such as Genetic Algorithm (GA) for 
parameter optimization of controllers is presented in [17]. In [18‐20] the effectiveness of this technique 
has been shown in position control and path generation of robotic systems. In [21] parameter 
optimization was obtained for a small helicopter based on GA focusing on stability of the system. 
In this paper, we utilize the EKBF method along with nonlinear dynamics of the quadrotor as an efficient 
solution to estimate unmeasured states of the quadrotor dynamics. Finally, a nonlinear robust controller 
is developed with optimized control parameters adjusted by GA for decreasing the impact of aerodynamic 
effects on modeling and control of the system. The paper is organized as follows: Section 2 presents the 
dynamic model of a quadrotor. In section 3 the presentedEKBF is described. Section 4 proposes the 
developed sliding mode control technique for the quadrotor along with an optimal method using Genetic 
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Algorithm which ensures the locally asymptotic stability of the system. Finally the simulation results have 
been presented in section 5 and some concluding remarks (section 6) end the paper. 
2.Dynamical model of quadrotor 
Quadrotor is anextremelynonlinear, multivariable, strongly coupled, and under actuated system (six 

degrees of freedom with only four actuators) as shown in Fig.1.      1,2,3,4iF i  in the figure is the 

trust force produced by rotors.  

Simultaneous increase or decrease in speed of all rotors, will generate the vertical motion of the 
quadrotor. To analyze the dynamics of this system, consider two reference frames.The earth‐fixed frame 

and the body‐fixed reference framedenoted by { , , }x y zE E E E and { , , }x y zB B B B  respectively. The 

position [ , , ]Tx y z  and the angle [ , , ]T     are defined in the reference frame E. These three 

Euler Angels are named roll angle ( )
2 2

    pitch angle ( )
2 2

    and yaw angle 

( ).      

 

 
 

Fig. 1.Quadrotor helicopter schematic 

The rotation matrix from B to E is: 

( ) (1)

C C C S S S C C S C S S

S C S S S S C C S C S S
R

S C S C S

           

           

    

  
 

    
 
  

 

 
Rotor aerodynamics:  

The aerodynamic forces and moments are established by synthesizing momentum with blade element 

theory according to results of [3‐4]. The power exertedon each motor produces a torque, QiM ,which 

results in a thrust iF thatcan be derived as: 

2 2

2 2
(2)

i F

Qi Q

F C Ar r

M C Ar r





  
   

    
 

where aerodynamic coefficients are denoted by thrust coefficient FC and torque coefficient QC . Also, A  

is the area of propeller disk, 
31.293 /   kg m   is the air density, r  is the radius of the blade and   is 

the angular velocity of the quadrotor propeller.  The generated moment about the roll axis, RiM , and 

drag force on the rotor, iD , can also be given as: 
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2 2

2 2
(3)

Ri R

i D

M C Ar

D C Ar





  
   

    
 

where aerodynamic coefficients are denoted by drag coefficient DC  and roll coefficient RC .  

State Space Model of the Quadrotor 
The full quadrotor dynamic model without aerodynamics effects, regarding the , ,x y zmotions as 

outcome of pitch, roll or yaw rotationscan be written as: 

(cos sin cos sin sin ) 1

(cos sin sin sin sin ) 1

(cos cos ) 1

2

3

4

l
x U

m

l
y U

m

l
z g U

m

I I j ly z r U
I I Ix x x

I I j lz x r U
I I Iy y y

I I lx y
U

Iz I z

    

    

 

  

  

 

 

 

  


   


   


 









  

 
 

  
  

   


 
 
 







  

  

 

 

 

 

 

 

 

 

(4) 

Table 1 in section 5, summarizes different parameters of the prototype quadrotor. The inputs of the 

system posed on 1 2 3 4, , ,U U U U  and  as a disturbance are given by: 

1 2

2 2 2 2
1 3 4

2 2
2 4 2

2 2
3 3 1

2 2 2 2
4 2 1 4 3

2 4 1 3

( )

( )

( )

( )

U b

U b

U b

U d

     


  


  


    
    


 

 
 
 
(5) 

The model (4) can be rewritten in state‐space form ( , )X f X U by introducing 1 12[ ,....., ]X x x as 

the state vector of the system: 

1 7

2 1 8 7

3 9

4 3 10 9

5 11

6 5 12 11

,

,

,

,

,

,

x x x

x x x x x

x y x

x x y x x

x z x

x x z x x













 
    
  


   
  


   

  

  

 

 

 
 
 
(6) 

In the remaining of this section the translational and rotational dynamic equations with aerodynamics 
effects according to Newton‐Euler method are derived. Firstly the translational dynamic equation is given 
by: 

totalF m   (7) 
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where, totalF  is the external force which can be defined as: 

total rotor aero GF F F F             (8) 

in which GF mG is the gravitational force, [0,0, ]TG g and rotorF  indicates the aerodynamic force of 

the rotor and aeroF  is the air resistance: 

4 4

1 1
( )( )rotor i ii i

F R F D
 

     

21
( )

2
B

aeroF AC U
(9)

 

whereC  is aerodynamic force coefficient, [ , , ].x y zC diag C C C  

Now, from eq. (9) the translational dynamicequations are defined [22]: 

1 4[(cos sin cos sin sin ) 1

1 24 ( ) ]1 2

1 4(cos sin sin sin sin ) 1

1 24 ( ) ]1 2

1 1 24[(cos cos ) ( ) ] (10)1 2

x Fiim

BD AC Ux xxii

y Fiim

BD AC Uy yyii

Bz g F AC Uz ziim

    



    



  


   


  


   




 

    







 

Next the rotational dynamic equations are obtained [22]: 

( )totalM I       

(11)total c g RM M M M    

Where 
41

1
( 1)ig r gii

M j M


     is the gyroscopic torque of the rotors.

41

1
( 1)iR Rii

M M


   , is 

the rolling moment and cM  is the moment generated by rotors: 

2 4

1 3

41

1

(12)

( )

( )

( 1)

C

i
Qii

l F F

M l F F

M



  
 

   
 
  

 

Now, from Eqs. (11 12) we have: 
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41

1

4 2

41

1

1 3

41

1

( 1)

( )

( 1)

( )

( 1)

(13)

y z ir
Rxii

x x x

x

iz x r
Ryii

y y y

Y

x y ir
Qii

Z z

I I j l
M

I I I

l
F F

I

I I j l
M

I I I

l
F F

I

I I j l
M

Iz I I

  

  

  













  
     

 

 



 
      

  

 



         







  

  

  

finally, the general state space equation of quadrotor 

using state variables in eq.(6) can be written as:  

2

1

4

1

6

7 9 1

8

1 0 1 2 1 1 0 2 1 2

1 0

8 1 0 3 8 4 2 3

1 2

8 1 0 5 3 4

1

1

1( , ) (1 4 )( c o s c o s )

x

y

x

u U
m

x

u U
m

x

f X U g x x U
m

x

x x a x a b U

x

x x a x a b U

x

x x a b U

 
 
 
 
 
 
 
 
 
 
 

   
 
 
 

   
 
 

   
 
 
   where,

1

2 1

3 2

4 3

5

(15)

( ) /

/ , /

( ) / , /

/ , /

( ) /

y z x

R x x

z x y y

R y z

x y z

a I I I

a j I b l I

a I I I b l I

a j I b l I

a I I I

 

  

  

  

 

5 7 9 5 7

5 7 9 5 7

(1 6 )

(c o s s in co s s in s in )

(c o s s in s in s in s in )

x

y

u x x x x x

u x x x x x

 

 
The variables xu and yu can be considered as 

virtual commands whichrotate the thrust vector 4U in such a way that the desired x y translational 

motion is achieved.  
Extended KalmanBucy Filter 
The Kalmanfilter provide same astonier missing information from in direct (and noisy) measurements. It 
also provides optimal (minimum variance) state estimation when the dynamic system is linear. The EKBF 
is an optimal recursive estimation algorithm for computing the states of a nonlinear stochastic system 
with uncorrelated Gaussian process and measurement noise. According to eq.(6), the states vector is then 
defined as: 
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[ , , , , , , , , , , , ]X x x y y z z                  (17)        

Let the state and output equations of a Gaussian stochastic system be described by the following 
stochastic differential equations [15,16]: 

(18)

( ( ), ( ), ) ( ), ( ) (0, ( ))

( ) ( ( ), ) ( ), ( ) (0, ( ))

x f x t u t t t t N Q t

y t h x t t v t v t N R t

  

 

 �

�  

where ( )x t  is state vector and ( )y t  is the measurements vector. ( )t is the state noise and the 

vector ( )t  is the measurement noise. The state noise and the measurement noise are mutually 

independent and independent of the initial state 0x whose probability density 0( )p x is determined.Then 

the initial conditions are: 

0 0 0
ˆ( ) [ ( )], ( ) var[ ( )] (19)x t E x t P t x t 

 

in which ˆ( )x t is the estimate of x  vector. 

When the system is linear with assumption of Gaussian probability densities for the states and noises, the 
functions ( ( ), )f x t t and ( ( ), )h x t t are linear with respect to the states, and the solution for the 

estimation problem is the Kalman‐Bucy Filter.However, if the system is nonlinear, the probability 
densities may be approximated by Gaussian densities such that their moments can be recursively 
evaluated by a set of approximately linear equations which define the Extended Kalman Bucy Filter 
[15,16].

 
In prediction step, the mean ˆ( )x t and covariance matrix ( )p t  for a continuous interval satisfy the 

following ordinary differential equations: 

ˆ ˆ ˆ( ( ), ( )) ( )( ( ) ( ( )))x f x t u t K t y t h x t  
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )TP t F t P t P t F t K t H t P t Q t   
 

1( ) ( ) ( ) ( ) (20)K t P t H t R t   

where ˆ( ( ), )F x t t is the Jacobean matrix of ( ( ), )f x t t  evaluated at ˆ( )x t  and ˆ( ( ), )H x t t is the Jacobean 

matrix of ( ( ), )h x t t evaluated at ˆ( )x t : 

( ( ), ( ), )
( )

ˆ ( ), ( )

( ) (21)
ˆ ( )

f x t u t t
F t

x x t u t

h
H t

x x t










 

Therefore, according to eq.(21), in this study the Jacobean matrix ˆ( ( ), )H x t t and ˆ( ( ), )F x t t  are set as : 

1 6 1 4

3 6 3 2

5 6 5 4

ˆ

ˆ ˆ

ˆ

0

0 1 0 0 0 0 0 0 0 0 0 0

ˆ0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

ˆ0 0 0 0 0 0 0 0 0 0ˆ( ( ), )
0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0

x

x x

x

a a x

a a

a x a
F x t t

 










































 

12 12
ˆ( ( ), ) [ ] (22)H x t t I   

and ( )Q t is noise power measurement and ( )R t is the covariance matrix of the state noise measurement 

that are given by:

 
(var( ))

(var( )) (23)

R diag

Q diag








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In Extended KalmanBucy Filter choosing the value of R  and Q  matrices influence on the system states. 

In this regard, choice of the noise power is very substantial such that it could be very effective in reducing 

the settling time to stability of the system. In kalman filter the value of P  covariance’s matrixmust not go 
to zero during the yield action, so define an initial condition for that in simulation steps, for this target 

describe a lower limit to so this measure replace by it. The measurement values of ,x y andhare 

obtained from the measurement equation of the linear type ( ) ( ( ), ) ( )y t h x t t v t  . 

Sliding Mode Control of the Quadrotor 

Indicates the X̂ is estimation of state vector (17)with: 

1 12
ˆ,

ˆˆ ˆ ˆˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ[ , ...., ] [ , , , , , , , , , , ]T
yX x x x x y z z             

The sliding mode controller designing procedure is exerted in two steps. Firstly, choice of sliding 

surface ( )S is produced according to the tracking error, In second step consider a Lyapunov function that 

verified the necessary condition for stability ofLyapunov law [12‐14].The sliding mode control to 
quadrotor state variables estimated dynamic is presented by establishing the statement for control input. 
The sliding surfaces are described as follows: 

2 1 1

4 2 3

6 3 5

10 5 9

12 6 11

( 24 )

78 4

x

y

z

s e e

s e e

s e e

s e e

s e e

s e e


















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 


 
  


  


 

 

Such that 0i   and
1 1

ˆ

ˆ
i id i

i id i

e x x

e x x 

 


  
, [1,11]i Assuming here that

21
( )

2
V s s  then, the necessary 

sliding condition is surveyed and Lyapunov stability is guaranteed. The chosen law for the attractive 

surface is the time derivative of ( )V s satisfying 0s s 
   

1

8 4 7

7 8 3 7 8

1 0 1 2 1 1 0 2 1 2

4 8 ( 2 5 )
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ˆ ˆ( )

ˆ ˆ ˆ

ˆ( )

d d

d

d

s k s ign s

e e

x x x x

x x a x a b U

x

 







 



 

   

     

 



 

  





 

 

According to the control equation of roll angle ( )  in eq. (14), control 2U  is obtained: 

2 1 10 12 1 10 2

1

4 8

1 10 12 1 10 2

1

4 8 (26)

1
ˆ ˆ ˆ( ( )

ˆ( ))

1
ˆ ˆ ˆ( ( )

)

d d

d

U k sign s x x a x a
b

x

k sign s x x a x a
b

e





  

 

    

  

    

 

 



 

Similarly, pitch angle ( )  control input 3U   can be obtained as:
 

3 2 8 12 3 8 4 5 10

2

1
ˆ ˆ ˆ( ( ) )dU k sign s x x a x a e

b
         and yaw angle ( )  control input 4U  is written as: 

4 3 10 8 5 6 12

3

1
ˆ ˆ( ( ) )dU k sign s x x a e

b
      

 
Also altitude control input 1U and the control variables xU and yU can be obtained: 
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1 4 3 6

7 9

5 1 2

1

6 2 4

1

(27)

( ( ) )
ˆ ˆcos cos
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( ( ) )

z d

x x d

y y d

m
U k sign s g z e

x x

m
U k sign s x e

U

m
U k sign s y e

U







    

   

   




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Finally, from eq. (24) the sliding surfaces are chosen as:

 

 

2 1 2 1 2

4 2 3 3 4 2 3 4

6 3 5 5 6 3 5 6

8 4 7 7 8 4 7 7

10 5 9 9 10 5 9 9

12 6 11 11 12 6 11 11

1 1
ˆ (1
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Optimizing the sliding mode controller using Genetic Algorithm

 

 
Genetic algorithm is defined as a method of solving problems to which no satisfactory, explicit, solution 
exists.GA is started with a population of strings and thereafter generate successive populations using the 
following three basic operations: reproduction, crossover, and mutation [17‐21].The main feature of GA 
in this paper is to transform the system output into a cost function in order to find the best values of the 
control parameters which minimizes the amount of control efforts. This cost function is as follows: 
 

( ) (29)T TJ x Rx u Qu   
 

whereR  and Q ,square matrixes of twelfth order described in equation (18), areadjusted to provide the 

most efficient values.  

Simulation result 
This section accredits the efficiency of proposed model and control scheme by numerical simulation 
examinations.Table1,summarizes different system parameters of the prototype quadrotor helicopter. 

Table 1: Structural parameters 

Parameter      Definition           Value           Unit 
Mass                   0.723                  kg 

                       Arm length         0.314                  m 
                      Rotor inertia      7.32         kg  
                     X inertia             8.678       kg  
                     Y inertia             8.678       kg  

                      Z inertia             3.217      kg  
Trust factor        5.324      N  
Drag factor8.721    N  

g                     gravity            9.81                 
 

 

In addition, full GA‐tuned parameters of the designed controller 1 6 1 6( ,.. , , ,.., )k k  resulted from the 

computations of section 4.1 have been shown in table 2. 
 

Table 2: Control parameters 

Item      Value       Item       Value 
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           3.58                   8.05   
            5.05                     13.65 
            3.40                     1.89 
            0.60                     0.43 
            3.60                     4.26     
            1.68                     5.01    

Regarding the explanations in section3, the necessaryparameters for simulating the part belonging to 
estimation of EKBFwill mention as follows. The Number of generated white noise for both and  is 

considered to 
610 and the rate of measurement noise power is considered 

410 and the rate of state noise 

isalso considered 1,both of noises are provided linear which general format of that is as follow: 
6 4(10 ,1,10 , ' ')wgn linear   

6(10 ,1,1, ' ')wgn linear   

according to values of and ν , which provided by white noise, Rmatrix and Q  matrix, respectively are 

considered to be: 
4 3

7 7 5 5[10 ,10 ]Q diag I I
 

   
4 3

7 7 5 5, [10 ,10 ]R diag I I
 

   
 

also the initial value for P  covariance matrix is chosen as
2( 1)P diag x  . The initial conditions for 

UAV are ( , , , , , )(0) 0 0 0 0 0 0i colx   with 1,..,6i   for translational subsystem 

and (0) ( , , , , , )
4 4 4 4 4 4

ix col
     

 with 1,..,6i     for rotational one. Also the desired positions are 

(0) (2,2, 2, 2, 2,2)ix col with 1,.., 6i  ,and desired angles 

are (0) (0,0,0,0,0,0)ix col with 1,.., 6i  .The values of the aerodynamic force coefficient 

[ , , ]x y zC C C  are set to 0.25 , and stop when angles   and  and are stabilized to zero values.  

Fig.2 shows the response of the nonlinear controller to stabilize the quadrotor during hovering. It can be 
seen that the controller succeeded in controlling the roll, pitch, and yaw angles of the quadrotor in less 
than 2s. Fig.3 shows quadrotor dynamics are stabilized following the given position. Fig.4 and Fig.5, show 
the estimated errors results, obtained for the attitude and position stabilization of the mini aircraft 
controller based EKF observer that ensures a good tracking presents. Fig.6 shows the stability rotor speed 
response of a quadrotor during hovering. Finally,Fig.7 indicates an excellent reference tracking 
performance even if external disturbances originated by aerodynamic forces and moments are 
considered. 

 
Figure2.Tracking results forthe orientation (  
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Figure 3.Tracking results for theposition  

 

Figure 4.Estimation errors due to trajectories of (  

 
Figure 5.Estimation errors due to trajectories of  
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Figure 6. Control inputs of thequadrotor helicopter 
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Figure 7.Global trajectory of the quadrotor 

 
 CONCLUSION 
In this paper, a novel stabilizing control laws synthesis were presented based on sliding mode technique 
along with optimal tuning of control parameters by using genetic algorithm. In modeling of the 
quadcopter system, we considered the gyroscopic effects and generated the dynamic equations with 
Newton‐Euler method. The developed control laws allowed the tracking of various desired trajectories 
expressed for the center of mass coordinates of the system. A nonlinear observer (EKBF) was also 
introduced to estimate unmeasured states of the system.The ability of the nonlinear controller in 
stabilizing the quadrotor system is examined through various simulations and the results indicate 
effectiveness of the proposed control strategy. 
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