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ABSTRACT 

Kelvin-Helmholtz instability at the interface between two separate fluids that move in two opposite directions is 
considered. In the simplest condition, two similar inviscid fluids with a non-rotary flow are considered on both sides. In 
this article, Kelvin-Helmholtz instability has been studied for the interface between two non-mixing fluids and different 
density. Dimensionless parameters in this problem are Weber number and Reynolds number for studying the effect of 
surface tension and viscosity respectively. Numerical simulations were performed using a finite differential Front tracking 
method. The behavior of the interface is studied at different flow conditions. Specifically, the spreading of an applied 
disturbance wave on the interface is studied. The probability of drop formation is investigated in the flow. It is found that 
drop formation occurs at a specific range of Weber numbers. Ultimately, the effects of surface tension and viscosity on the 
development of the interface have been discussed. 
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INTRODUCTION 
Flows with lower viscosities are more likely to become turbulent, while highly viscous flows would 
become turbulent in a longer period of time. In some cases, the instabilities of the flow increase and is 
amplified up to the point of bringing the flow into turbulent status. As an example when a layer of a 
relatively heavy fluid such as water moves on a lighter fluid layer such as oil, Rayleigh-Taylor instability 
would occur, leading the flow to become turbulent. Another instability called kelvin-Helmholtz occurs 
when two fluid layer move on each other with different velocities and in opposite directions, which would 
cause a turbulent flow as well. Kelvin-Helmholtz instability occurs when a shear stress is applied on a 
flowing fluid, or when two fluid layers flowing on each other have different velocities in the boundary 
layer between two flows. Examples of this phenomenon could be the displacement of the upper layer of 
water due to a blowing wind, the red point of the Mercury's surface, and the moving of the clouds and 
oceans' water (Fig. 1). This phenomenon was first described by two reputable physicists, Lord Kelvin and 
Hermann Von Helmholtz. The analysis and study of the linear stability in Kelvin-Helmholtz problem 
returns to the 19th century; however, researchers have recently performed numerous analyses of the 
nonlinear behavior of the concentrated vortices, in the field of fluid dynamics [1]. Given the development 
of computers and the possibility of rapid calculations, most of the researchers have conducted studies on 
very thin vortex planes consisting of two potential flow regimes. They have found out that due to the rapid 
growth of low mixtures in vortex planes, it is not quite easy to determine the exact formation point of the 
vortex. 



BEPLS Vol 4 [Spl issue 1] 2015 270 | P a g e             ©2015 AELS, INDIA 

 
Figure 1. Kelvin Helmholtz instability. Two fluids movements in opposite directions causing turbulence in 

the flow 
 

Krasny has shown that adjusting the vortex planes results in a better solution of the problem, in addition 
to the elimination of separate deformations [2]. Other researchers studied the nonlinear development of 
Navier-Stokes equations, and indicated that the turbulent shear layer finally results in thin vortices [3, 4]. 
Tryggyason and Dahm analyzed a specific range of large Reynolds numbers with small initial thicknesses, 
and compared the complete simulation of Navier-Stokes equations with adjustment inviscid planes of 
Krasny [5]. Kelvin-Helmholtz instability for two completely similar fluids with the possibility of mixing is 
currently considered as a solved problem [6]. In similar problems, the solubility of fluids with limited and 
separate density and viscosity has not been adequately studied, considering surface tension and non-
mixing fluids. The effects of surface tension for fluids of equal densities, and by completely eliminating the 
effects of viscosity have been analyzed by Ho, Lungroob, and Shelly. They found that a high surface tension 
impedes the flow, and for this very reason, the interface of two fluids penetrate and grow in each other like 
fingers. 

 
Figure 2.  Deformation of the interface between two liquids due to surface tension and create finger 

With low surface tension, the finger conditions of the interface would be more equal, and the interface of 
two fluids would behave similar to nonlinear classic Kelvin-Helmholtz instability [7]. Pozrikidis has done 
research about other ranges of Stocks flows, stating that the interface of two fluids would be less stable 
with increasing of viscosity rate, and would develop the elongated finger condition of the interface of two 
fluids [8]. Zaleski and Zenetti analyzed the effects of both inertia and viscosity including surface tension, 
leading to developments in finger condition interface for limited Reynolds numbers. Moreover, they 
indicated that the obtained results from finger condition in two dimensions can be applied for studying 
their 3D effects [9]. Currently, perceiving the segmentation and separation of the interface between two 
insoluble fluids with different properties is in the core of attention. In this paper, the effects of both 
surface tension and viscosity of fluids with different densities have been considered. The behavior of the 
interface between two fluids of different densities has been studied under various conditions. 
GEOMETRY OF THE PROBLEM 
The geometry of the problem is demonstrated in Fig. 3.  
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Figure 3.  Schematic view of the motion of two fluids with different properties in different directions
Two different fluid layers, flowing in opposite directions, are in surface contact. The 
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3. PROBLEM FORMULATION AND COMPUTATIONAL 

In order to analyze the problem and develop a desirable computer code, a rectangular domain with 
periodic horizontal conditions and rigid moving walls in its upper and lower parts are considered. 
Dimensions of this domain are equal to 

The interface development between two fluids can be determined by the velocity difference, surface 
tension, density, and the viscosity of fluids. When the viscosities are
the initial growth rate be predictable by the linear stability analysis of inviscid fluids [10]. A disturbance is 
applied to the interface in the front which is a function of time t and position x:
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Considering the linear stability theory for two adjacent flowing fluids, with including the effects of surface 
tension, and neglecting the effect of gravity, the following equation would be obtained for 
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selected main axes are in the direction of the flow, and perpendicular to the direction of the flow. 
Moreover, the boundary conditions of the problem, in the direction of the flow, are periodic.

OMPUTATIONAL DOMAIN 
In order to analyze the problem and develop a desirable computer code, a rectangular domain with 
periodic horizontal conditions and rigid moving walls in its upper and lower parts are considered. 
Dimensions of this domain are equal to 4  in horizontal direction, and 2  in vertical direction. 

The interface development between two fluids can be determined by the velocity difference, surface 
tension, density, and the viscosity of fluids. When the viscosities are adequately small, it is expected that 
the initial growth rate be predictable by the linear stability analysis of inviscid fluids [10]. A disturbance is 
applied to the interface in the front which is a function of time t and position x: 

Figure 4.  The computational domain 
Considering the linear stability theory for two adjacent flowing fluids, with including the effects of surface 
tension, and neglecting the effect of gravity, the following equation would be obtained for 

1 1 2 2 1 2 1 2

1 2 1 2
1 2

2 2 3
U U k (U U ) Tk

2
( )

   

    

 
   

 

where the first term is the phase velocity C, and the second term is the growth rate, defined as below:

S iC, C , Re(S)    

is the wave number, where   is the disturbance wave length, applied to the interface of 

dimensional form, the growth rate and phase velocity would be obtained from:

T 1 1 r 1

U We r 1 r 1 We
  

  

 
 
 

           ©2015 AELS, INDIA 

 
.  Schematic view of the motion of two fluids with different properties in different directions 

Two different fluid layers, flowing in opposite directions, are in surface contact. The lower flow is a fluid 

. The upper flow is a fluid 

respectively, which is moving to the left with velocity
2

U . The 

selected main axes are in the direction of the flow, and perpendicular to the direction of the flow. 
the problem, in the direction of the flow, are periodic. 

In order to analyze the problem and develop a desirable computer code, a rectangular domain with 
periodic horizontal conditions and rigid moving walls in its upper and lower parts are considered. 

in vertical direction.  

The interface development between two fluids can be determined by the velocity difference, surface 
adequately small, it is expected that 

the initial growth rate be predictable by the linear stability analysis of inviscid fluids [10]. A disturbance is 

)1(  

 

Considering the linear stability theory for two adjacent flowing fluids, with including the effects of surface 
tension, and neglecting the effect of gravity, the following equation would be obtained for S : 

)2(  

where the first term is the phase velocity C, and the second term is the growth rate, defined as below: 
)3(  

is the disturbance wave length, applied to the interface of 

dimensional form, the growth rate and phase velocity would be obtained from: 
)4(  



BEPLS Vol 4 [Spl issue 1] 2015 272 | P a g e             ©2015 AELS, INDIA 

)5(  
1 2

rU UC 1
C

ΔU (r 1)U


 

 


  
Here, the time scale and characteristic velocity are defined as: 
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where T is the surface tension between two fluids. The phase velocity clearly indicates that the initial wave 
is transferred via the average velocity of density concentration. The growth rate would have a real value, if 
the expression under the square root in Eq.4 retains a positive value. In other words, the minimum value 
of growth rate would be obtained by the following Weber number: 
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In addition the maximum value of growth rate would be obtained by the following Weber number  
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Moreover, Reynolds numbers would be defined, based on the properties of the upper and lower fluid 
layers: 
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The numerical method used for the computations presented here is based on writing one set of equations 
for the entire computational domain. This is possible by allowing for different material properties in the 
formulation and adding singular terms at the boundaries between the different fluids to ensure that the 
correct interface conditions are satisfied. The resulting ‘‘one-field’’ Navier–Stokes equations are: 

)11(  ρ
ρ . ( ) ( )

u uu u uTp T x x dafFt
n 

           
 

Here, u is the velocity vector, p is the pressure, ρ and   are discontinuous density and viscosity fields 

respectively, and n is the surface normal. The surface forces act only on the interface between the fluids 
and appears in the current formulation multiplied by a two-dimensional delta function,  . The integral is 

over the entire front or interface. This equation contains no approximations beyond those in the Navier–
Stokes equations and in particular, it implicitly contains the proper stress conditions for the fluid 
interface. Since the density and the viscosity are different for each fluid, it is necessary to track the 
evolution of these fields by equations of state, which specify that each fluid particle retains its original 
density and viscosity: 
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The momentum equation is also supplemented by an equation of mass conservation, which for 
incompressible flows is: 

)13(  .U 0  

The momentum equation is discretized on a regular staggered grid using second-order central differences 
for the spatial derivatives and a second-order predictor–corrector time integration scheme. The continuity 
equation, when combined with the momentum equation results in a pressure equation that is not 
separable as for homogeneous flow and is solved by a multi-grid method [10]. To advect the material 
properties, and to evaluate the surface tension term in the momentum equation, we track the interface 
between different phases explicitly by connected marker points (front). The number of points 
representing the front is selected such that there are approximately 2–4 front points per stationary mesh. 
As the front deforms, points are added and deleted dynamically to maintain adequate resolution. The delta 
function is regularized by distributing the surface force and the density gradient onto the fixed grid. In the 
computations reported here, we have used a distribution function introduced by Peskin [11] which 
smooths the   function to the nearest nine grid points. The one-field formulation used here is common to 

other techniques for multi fluid flows such as the VOF (volume of fluid) method and the more recent level 
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set method. In these methods, however, the phase boundary is not tracked explicitly, but reconstructed 
from a marker function. Explicitly tracking the interface avoids the difficulty of advecting such marker 
functions and allows accurate evaluation of the surface tension. While very high surface tension can 
sometimes cause unphysical parasitic currents as well as stiffness problems, explicit tracking as well as a 
semi-implicit treatment of the surface tension helps minimizing these problems [12]. The method has 
been applied to a number of multi fluid problems and tested and validated in a number of ways, not only 
to check the implementation, but also its accuracy. Those tests include comparisons with analytical 
solutions for simple problems, other numerical computations, and experiments. The actual resolution 
requirement varies with the parameters of the problem. High Reynolds numbers, for example, generally 
require finer resolution than lower ones, as in other numerical calculations. However, in all cases we have 
found that the method converges rapidly under grid refinement, and in those cases where other solutions 
exist we have found excellent agreement, even for modest resolutions. For a more detailed description of 
the method, see Ref. 12. 
LINEAR STABILITY  
In the beginning, the velocity field is not continuous, and a large Reynolds number can be noticed; hence, 
the initial growth is expected to be completely predictable by inviscid analysis (Eq.2). In order to find the 
initial velocity field, the strength of vortex plane can be calculated by subtracting the disturbance 
velocities at the interface of two fluids. In non-dimensional form, the result would be as below [13]: 
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Where k   is non-dimensional initial domain;   is linear growth rate in Eq.4, and x kx  is non-

dimensional horizontal position. Retaining the strength of vortex plane, the circulation   in separate 
points can be obtained as below, by integrating around a small area in the interface: 
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In order to obtain the vorticity field, once the circulation is found for separate points of the interface 
between two fluids, it can be distributed to the static points of around the interface. Thereafter, the Stream 
function can be obtained by solving the following equation: 
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Finally, having the stream function, the velocity can be calculated from: 
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After acquiring the initial velocity field, the solution of the problem would develop in time to get the 
evolution of the interface. In order to evaluate the non-dimensional linear growth rate, considering Eq.1 
and Eq.4, by their combination, and rewriting them, the following equation would be obtained: 
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Having the non-dimensional growth rate as a function of time, it would be possible to draw its diagram in 
each research step, and compare the results to those of linear inviscid theory. 
5. RESULTS  
In Fig.5, the non-dimensional initial growth rate is plotted as a function of time for two similar fluids (with 
equal densities), and a Weber number of 6 for a condition where Reynolds number for both of the flows is 
10000. In this diagram, the predicted growth rate by the linear stability theory, and the growth rate 
obtained in this research have been demonstrated. The predicted growth rate by the linear stability theory 
can be obtained by Eq.4 as: 
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If the growth rate remains constant, the diagram would be parallel to time axis as a full horizontal line, 
which indicates the initial growth rate obtained from linear inviscid theory. It is quite obvious that the 
numerical calculations in initial times converge to this line; however, as the wave amplitude increases, 
nonlinear effects reduce the growth rate. 
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Figure 5.  Initial non dimensional growth rate vs time for density ratio = 1, Weber number = 6 and 

1 2
Re Re 10000  

Repeating the calculations for numerous Reynolds numbers between 600 and 10000, it has shown that the 
changes are not highly considerable, which implies that the effects of viscosity are not significant in initial 
times. Moreover, this diagram indicates the validation of the present code for modelling this problem. 
In order to study the effects of difference between two flows, we considered a density ratio 10. The non-
dimensional growth rate from inviscid theory can be obtained: 
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Figure 6 shows the growth rate versus time for this case. 

 
Figure 6.  Initial non-dimensional growth rate vs time for density ratio = 10, Weber number=10, 

1
Re 5000 and 

2
Re 1000 

The development of the interface between two fluids with equal densities and viscosities has been 
demonstrated in Fig.7. In this calculation, the Weber number is 6 and the Reynolds number for both flows 

is 10000 and the grid resolution is 256 512 . The initial wave amplitude    is 5persent of the wave 

length. 
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Figure 8 presents results of a simulation at a density ratio 10. Low Weber number is assumed (We=1.7). 

The Reynolds number of bottom and top flows are 
1

Re 5000  and 
2

Re 1000  respectively. The wave 

amplitude damps out after an initial growth. 
In next step, we changed the Weber number to 5 (Fig.9). Here, drop formation is visible close to the end of 

simulation. Clearly a drop is likely to separate from the interface at the location where neck is formed. 
Finally, we consider we=10 for studying the behavior of interface under very small surface tension 
(Fig.10). Here, the mechanism of fingering is more dominant, even though the evolution shows a narrow 
region of separation. 
 

 
Figure 7.  Kelvin Helmholtz instability and growth of disturbances acting on the interface of two similar 

flows for 
1 2

Re Re 10000   and We=6.0

 

 
Figure 8.  Kelvin Helmholtz instability and growth of disturbances acting on the interface of two different 

flows, density ratio = 10, 
1

Re 5000  , 
2

Re 1000  and We=1.7
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Figure 9.  Kelvin Helmholtz instability and growth of disturbances acting on the interface of two different 

flows, density ratio = 10, 
1

Re 5000  , 
2

Re 1000  and We=5.0

 

 
Figure 10. Kelvin Helmholtz instability and growth of disturbances acting on the interface of two different 

flows, density ratio = 10, 
1

Re 5000  , 
2

Re 1000  and We=10.0

  
CONCLUSIONS  
Several simulations of the two-dimensional Kelvin– Helmholtz instability of immiscible fluids are 
presented. The Reynolds numbers selected are sufficiently high so that the initial instability is well 
predicted by inviscid linear stability theory. It can be easily noticed that when we consider large Weber 
numbers, the initial disturbance grows rapidly. It has been observed that as the Weber number increases, 
the wave grows more rapidly, and the fluids grow into each other in a symmetric way for unity density 
ratio due to low surface tension. 
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For density ratio more than one, we can see asymmetric penetration in two flows. If the lower flow retains 
a higher Reynolds number, due to the reduction of its viscosity, it is noticed that the lower fluid penetrates 
into the upper fluid, and there is an asymmetry in the flow. 
In this research,  
It was attempted to find the condition where the interface would create discrete zones (drops), as it can be 
noticed at time 35 in Fig.9. 
In all conditions that was explored here, this phenomenon is not observed for Weber numbers lower than 
4. In other words, drop formation does not occur for Weber numbers below 3. 
For Weber numbers around 6 (5 to 7), the interface is capable to form drops, and release it into the other 
fluid. 
At larger Weber numbers (larger than 7), the growth rate of the interface is like fingers. these fingers or 
filaments form in the heavier fluid and release in the lighter fluid.. 
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