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ABSTRACT 
In recent years, machine learning algorithms and various areas of agriculture have aligned very closely with the 
availability of flexible programming tools (like Python and R) in terms of code simplicity, well-developed libraries, 
support from the open-source community, access to the high-end computing platform, more accessible access to public 
domain data. The process involves adequate studies to evaluate ML algorithms' performance in various agricultural 
application domains. The paper reviews applications of data science in agriculture involving AI/ML in a few 
representative areas like the dynamism of Land use and Land cover (LULC), food balance in agricultural exports; forest 
vegetation; groundwater resources; and soil moisture. The applications considered classification and prediction 
techniques in supervised ML algorithms, like Random Forest (RF), Extreme Gradient Boosting (EGB), Support Vector 
Machine (SVM), Decision Tree (DT), Normal Bayes (NB), and Long Short-Term Memory (LSTM), and compared related 
classification performance algorithms. The outcome is a comparative reference for researchers in these domains. 
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INTRODUCTION  
Data science is a multidisciplinary approach to extracting information from large and voluminous data 
collected or created from relevant applications. The process involves preparing data for analysis, 
processing advanced research to reveal patterns, presenting the results, and enabling stakeholders to 
draw informed conclusions[1].With the availability of faster computing platforms and well-developed 
algorithms, Machine Learning offers various approaches to extracting information from remote sensing 
imageries [2].  
For data analysis, data has to undergo cleaning and aggregation before processing using appropriate 
implementation tools. The analysis involves algorithms to deploy AI/ML/DL models to find information 
from data and transform identified patterns into predictions in support of decision-making processes. 
Scientifically designed tests validate the accuracy of predictions. The patterns and trending results are 
communicated to the target audience through data visualization tools [2]. 
AI/ML emerged well with high-performance computing platforms supporting data-intensive, 
multidisciplinary agricultural practices for yield prediction, crop management, weed detection, disease 
detection, species recognition, crop quality, and many more application areas[3]. 
 
MATERIAL ND METHODS 
To strengthen the review process, literature surveys are essential for analytical studies. The process was 
substantiated by an advanced search on practice areas like LULC, food security, forest vegetation, 
groundwater, and soil moisture.  
For journal search, a combination of Machine Learning AND (Practice Area) was considered. Each 
Practice area (refer to table 1) was tried one at a time. The search outcome, generated from the J gate plus 
database of global e-journals is captured in Table 1. 
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Table 1. Journal Search Outcome from Jgate database 
Sr # Practice Area All Full Text Text with ML performance 
1 LULC 134 77 44 
2 Food security 249 141 49 
3 Forest vegetation  12 5 1 
4 Groundwater 444 188 78 
5 Soil moisture 391 217 85 
 Total 1230 628 257 
Out of 1230 relevant documents listed from the journal search, 628 were full texts. The count was 
reduced to 257 when ML performance was added (AND).The available literature list was further 
shortlisted to28for analysis and performance accuracy in machine learning algorithms.  
These are open access journals having relevance to the application areas under consideration. 
 
SUPERVISED MODELS 
Machine learning (ML) techniques are a promising alternative to process remote sensing data and are 
applied in many data processing and analysis tasks [2]. These techniques are classified primarily into 
supervised, and unsupervised learning models[4], that can benefit the end users like the farmers, in 
minimizing losses in the farming through recommendations and insights about the crops, if shared in 
time. ML algorithms are used in many applications, with suitable performance metrics appropriate for 
each domain[3]. The ML methods allow establishing non-parametric and nonlinear relationships between 
parameters  (dependent and dependent variables), resulting in overall performance improvement when 
compared with conventional linear models [5]. 
A computing platform facilitates the classification and regression analysis for supervised models, 
clustering, and association for unsupervised models. The analytical studies in the time domain, and 
behavioral patterns during variance findings, log, and factor studies, originate from the artificial neural 
network (ANN) [2]. 
Unlike other areas of data science applications, the modeling process has several overlapping operations 
applicable in agricultural management steps. Representative steps in these agricultural domains are 
capturing raw data from appropriate sources; data preparation through cleaning, deduplication, and 
reformatting; data analysis for prediction and regression. The findings are finalized in a report or chart 
through data visualizations, easing the decision-makers to understand the impact [6]. 
The two functions involved in these processes are classification and regression. Classification predicts the 
object classes of unknown labels. It derives a model defining and differentiating data classes. The derived 
model is subjected to training with data of known class labels. Regression Analysis is for prediction, 
focused on the identification of distribution trends based on available data. The core transformations can 
be estimated by the supervised classification[7]. Supervised learning models require input at human 
intervention, with a feedback provision to enhance the prediction accuracy.  
Supervised learning approaches are simple and widely used in data classification processes [8] of 
agricultural applications.Multi-spectral satellite images are used to classify land into a built-up area, bare 
soil, water body, vegetation, and wetland. Such classification help to conduct change detection analysis or 
time series analysis [9]. 
 
IMPLEMENTATION TOOLS 
The benefits of data science in agricultural practices explore data-driven algorithms to build, train, and 
evaluate the machine learning models with agriculture-related data. The choice of computational 
platform and the programming language play a pivotal role in ML applications. There are several choices 
available in this regard to meet the requirements easily, and provide AI algorithms commonly used and 
discussed [10].  
In its implementation, Python, as a popular programming language, has many appropriate libraries 
contributed by the data science community. The popular and significant python libraries consist of 
NumPy for scientific computing, Pandas for data analysis, Skit-learn, and Tensor Flow for machine 
learning and deep learning applications. Other Python packages allow suitable development and 
production environments for agricultural application-specific domains. 
The statistical data analysis summarizes the key characteristics discovering attributes and trends with 
visual methods. Data exploration helps assess quality, quantity, and first-level features by data 
interpretation, visualizing in plot, histogram, or chart for researchers to study and analyze further. ML 
algorithms are chosen extensively for classifying satellite images to map the relevant Earth surface.  
Among the popular ML algorithms, Support Vector Machine (SVM) and Random Forest (RF) emerges with 
improved accurate results [9].  
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The advantages and disadvantages of commonly used ML methods are discussed based on the widely 
adopted practices put by researchers for data classification and regression. 
 

Table 2. Application, highlights of ML algorithms 
Application Methodology Highlights Referenc

e 
Predicted species 
distribution 

RF Improves prediction accuracy  [11] 

 SVM Works well with limited experimental data  

Prediction of carbon and 
energy flux 

ANN Effective  with traditional models to reduce 
uncertainty predictions 

[11] 

  Has excellent data mining capacity  

Hazard assessment and 
prediction 

ANN Can deal with data of higher dimensions  
 Adaptability to mapping nonlinearity  

 SVM Efficient in solving classification areas  

Forest management ANN Decent forecasting volume of wood, the height of 
trees, biomass, etc. 

 

 RF Potential in hybrid modeling RF and spatial 
interpolation 

 

 
SVM is easier to model nonlinear decision boundaries with options to choose from many kernels, allowing 
robust fitments. It avoids over fitting, particularly for higher-dimensional data spaces. As a feature, it can 
train models with fewer but meaningful pixels with the ability to accommodate limited information [4]. 
SVM is memory-intensive and tricky to tune by selecting the appropriate kernel. It will result ina poor 
extrapolation model in case of inconsistent prior data, and model dependency on previous support vector 
records.   
Decision Trees (DT) are part of SVM having decision nodes, and data split continuously based on certain 
criteria. The tree provides non-linear associations with parameters without affecting the tree 
performance. It is a tree-shaped structure, representing a set of decisions, generating rules for the 
classification of a dataset. With lesser effort in its data preparation, Tree methods are easier to 
understand and interpret for analytics. It is database size-independent and usable as an extension to a 
large database. The classification and Regression Tree have a lesser impact on outliers in its output.  
Random Forest under the SVM learning algorithm is used for both classification and regression. It runs by 
creating a host of decision trees during training. For classification criteria, the output of the Random 
Forest (RF) is the class selected by most trees. Random Forests are noted toreduce the overfitting risks 
effectively. 
ANN is used in learningmodels for bothcomplex and non-linear data with high fault tolerance toward 
noisy data and the ability to parallel processes. ANNs cannot identify the relative importance and effects 
of individual environmental variables [4]. 
 
AGRICULTURAL PRACTICES 
With the advent of analytical solutions, monitoring the farms, soil, plant activities, etc. are now easier to 
manage with additional clarity developed in agricultural systems. The enormous data generated from 
various wireless sensors used in the agricultural domain canbe processed to discover patterns paving 
paths for the farmers to make logical decisions in enhancing farm production and improved quality[10].  
For analysis of agricultural practices, field data collected from agricultural farms are classified by SVM to 
classify elements like the type of crop identification. Such classification and linear regression results in 
higher class accuracies, typically of the order 88–99%. Comparing two entities, such as crop qualities; by 
paired t-tests often differentiates known and predicted elements[12]. Differences between known and 
predicted mean are usually measured by root mean square error (RMSE). The results of studies and 
previous research depicted emerging practices and estimations of various parameters for effective 
monitoring and verifying agricultural management practices over spatial distribution (over larger 
areas)with temporal changes(distributed over longer durations)[13]. 
The following subsections cater to a few representative application areas illustrating data science usages 
under the agricultural scope of emerging digital technologies in agriculture[14]. 
The dynamism of LULC and food balance 
Human interventions in land usage for progress and growth is a continuous process ever since the 
inception of human civilization. Expansions in farming land for societal causes have seen significant 
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demographic transformation due to agricultural development. Agricultural trade plays a crucial role in 
farmers' incomes and associated people engaged in the food supply chain. It reduces food imbalance 
globally and allows wider choice in buyer merchandise, having grown significantly over the last two 
decades between 2001 and 2019. It adds global value to agricultural and food processing chains spread 
over several countries by linking agro-food sectors to the economy across the globe [15]. 
Precise month-on-month predictions of agricultural exports from a country are crucial to facilitate 
import-export planning and domestic consumption, resulting in a balance between production and 
marketing [16]. Researchers worked on predicting agricultural exports in the time domain using long 
short-term memory (LSTM). The research process explored Purchasing Managers' Index (PMI) of a few 
industries using LSTM to predict agricultural export trends. The results included keyword vectors in the 
PMI of the insurance and finance domain, that impact the prediction of agricultural export results. The 
agribusiness operators and policymakers can assess and regulate domestic and foreign production and 
sales on such prediction results [16]. 
Land cover is the scope of associating physical areas and using items on the earth's surface. Land use 
refers to social and economic causes associated with the overall human development process. The 
dynamism in LULC, added by the human interventions, has multiple bearingsin demographic 
transformation and related consequences on agricultural production [14]. 
Lesser vegetation leads to soilsusceptibility towardssoil erosion and degradation due to reduced water 
retention capability. Supervised classification models of spectral images obtained from satellite images 
can identify built-up areas, bare soil, vegetation, wetland, water body, etc. along with change detection 
analysis in time series. Results and analysis of such built-up area and related dynamics over a few 
decades in time frame can reveal the undergoing urban expansion processes [13]. 
The LULC assessed by multispectral (MS) satellite images produces land classification [17].In a study 
from south-central Sweden, the researchers collected stratified random samples from Sentinel-2 images 
of mixed-use areas. The samples, segmented into training and evaluation sets in a 70: 30 ratio for data 
modeling had an overall accuracy in SVM (0.758 ± 0.017), EGB (0.751 ± 0.017), RF (0.739 ± 0.018), and 
DL (0.733 ± 0.0023) [11]. 
Mapping vegetation is a type of LULC classification using MS data from large areas captured by remote 
sensing satellite images. Remote sensing as a prevailing tool acquires information about an object or 
phenomenon by measuring emitted and reflected radiation. It facilitates digital images, with an 
environment to perform multiple image operations. Advanced image classification techniques can map 
vegetation and land uses like urban land, forest, and water [18].  
A study over Dehradun analyzed spatial distributions of LULC [19] in and around the city area using 
Landsat-8 and Sentinel 2 images. The algorithms used in the study were RF, SVM,  Classification and 
Regression Tree (CART) [20], and Gradient Tree Boosting (GTB) [21], for both the satellite images. The 
outcome compared the performance of supervised ML algorithms on image classification.The accuracy 
measurement of the algorithms followed a confusion matrix and the Kappa calculation method. The 
accuracy measurement in CART was 89.24% to 93.52% and Kappa coefficient 85.64% to 91.36%; RF had 
91.45% to 95.86% accuracy and Kappa coefficient 88.59% to 94.48%, GTB produced 87.71% to 95.33% 
accuracy and Kappa coefficient 83.58% to 93.37%. In comparison, SVM had an accuracy measurement of 
73.54% to 84.96% and Kappa coefficient 76.28% to 79.99% [19] using Sentinel-2 and Landsat-8 data. 
LULC analysis helps to predict land-use changes over a period. The present studies indicate a probable 
saturation between food security and environmental conservation during the next few decades, with an 
equilibrium setting on agricultural production and urban expansionthrough land resource conservation 
[22]. 
 
Mapping Forest Vegetation 
Mapping forest vegetation is an essentialprocess to provide data on the surficial changes of specified 
areas[23]. Different ML algorithms offer to extract information from the surfaces using multi-spectral 
remote sensing footprints of these areas. Studies on ML applications for mapping forest vegetation 
present a framework of environmental planning with relevant data models[4]. Performance of ML 
algorithms like RF, SVM, DT (DecisionTree), and NB (Normal Bayes) evaluates these models. The outcome 
models validated by DT have the highest levels of accuracy in related activities [24]./// 
Maps of trees in forests are required to estimate terrestrial carbon resources, forest records, and predict 
tree mortality after the wildfire. Statistical methods and modified RF are used for analytics and 
classification. Treesare mapped in a forest using biophysical landscape characteristics with data collected 
from 30 × 30 m spatial resolution to produce tree-level maps. The results for forest cover were within the 
class agreement of 79%, forest height of 96%, and vegetation group of 92% [25]. 
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The rapid advancement of remote sensing technology has expanded the choice of imagery sources in 
agricultural practices. These images when used to map vegetation needs to align with different processes, 
considerations, and techniques. These image sources have varied properties in their spatial, spectral, 
temporal, and radioactive characteristics, making them viable to use for appropriate vegetation and 
mapping purposes. For vegetation classification, vegetation mapping at a species or community level 
forms the initial steps. It follows the vegetation type correlations (communities or species) with 
noticeable spectral characteristics from remote sensed (RS) imageries identified. Such spectral classes 
formed from the RS images are translated into the vegetation types using image interpretation and 
processing. 
 
Ground Water Resources 
Groundwater recharge is essential for agricultural fields, grasslands, and forests[26]. An assessment of 
measurable groundwater recharge is necessary, considering inevitable land cover changes by natural 
disasters[27]. Researchers adopted MS satellite images and Geographic information system (GIS) data to 
classify groundwater areas. The maximum likelihood classifier of a supervised model produced a kappa 
coefficient of 0.88 and an accuracy of 91.7%[28]. The topsoil loss due to landslides impacts groundwater 
recharge and will not improve fast in normal and natural conditions[29]. It takes nearly 100 years for the 
groundwater recharge to regain normalcy[30]. Efforts should be made to overcome the loss due to 
natural calamities. 
The groundwater availability is influenced by multiple parameters like soil, rainfall, drainage density, and 
LULC. A study explored potential groundwater zones in India using geospatial techniques for Ranchi 
district, Jharkhand (India), using DEM, Landsat 8 images. The study identified priority areas to develop 
strategies for sustainable groundwater development [31].  
 
Soil Moisture and Nutrients 
For many years, soil moisture has been crucial in agriculture, climatology, and hydrology. In the present-
day context, precision farming depends on the trend and pattern of soil moisture content at the root zone 
of the concerned area[32].  
Researchers evaluated soil moisture at 0–40 cm depth with a time-series soil moisture data of 
approximately 40 years[33]. Descriptive and inferential statistics applied to GIS data analysis resulted in 
the mean soil moisture of the specified study area. The soil moisture has an increasing trend in some 
seasons with changes in climatic conditions. It also follows a time-dependent (temporal) pattern that is 
not statistically significant. However, the spatial variation was statistically significant for different soil 
classes. The study revealed apotential link between GIS and remote sensing resources to assess global 
environmental changes [32]. 
Soil moisture is a significant climate variable also[34]. In a study in China, researchers explored soil 
moisture at 0–10 cm depth from 1948 to 2014 with the adjoining air temperature utilizing statistical 
analysis. The results indicated a significant decrease in yearly soil moisture (p < 0.01) in multiple study 
areas. The reduction in soil moisture trend was seasonal. It was lower in summer and winter than in 
spring. It also revealed that soil moisture at 0–10 cm negatively correlated with air temperature 2m 
above the ground in certain areas with higher temperatures. The combined results may improve the 
understanding of climatic changes and variations in regional soil moisture [35], although the climate 
change effects on agricultural productivity and vegetation are not uniform over time and space. 
ML techniques help to create comprehensive models to evaluate soil nutrient content. The evaluation 
methods for soil nutrients, based on SVM and ANN can create accurate soil nutrient content estimation, 
that has higher impacts on forest regeneration and plant growth process[36]. The performance evaluated 
by these models indicates higher model efficiencies reflected in  MSPE, ME, and RMSE with smaller values. 
 
Soil Organic Carbon Stock 
The land-use changes show that converting forest land and wetland to cropland caused SOCS loss from 
the soil. Such changes challenge our ecosystem, adversely impacting SOCS[37].The predictability of SOCS 
changes requires technological advancements in collecting and processing satellite-based remote sensing 
data[38]. It also involves soil data from different regional and global databases in published documents or 
databases to supplement SOCS predictability analysis[39].Soil samples collected from study plot areas are 
primary field data elements tagged with positional information (latitude, longitude)for geo-referencing. 
Under standard laboratory procedures, the soil samples were examined for SOC-related tests using total 
oxidized carbon and wet oxidation measurement as per standard laboratory procedures [40]. 
Remote Sensing data from satellite images supplements estimating SoC Stock (SOCS)trained models. The 
performance accuracy of predictive statistical models, such as random forest, partial least square 
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regression, etc., can be likened to assessing the SOC content. Predicting soil organic carbon in spatial 
distribution for land management relates to carbon emission and soil health [41]. Performance 
comparison of these models suggests that the predictability is not entirely dependent on spectral 
behavior[42]. SOC prediction using a Convolutional Neural Network (CNN) is encouraging compared with 
Random Forest (RF) with multiple environmental factors. The results show improved accuracy of CNN 
with added land surface varieties and other environment variables. CNN had higher prediction 
performance than RF regardless of the variables added, indicating CNN is a good soil mapping approach 
in a regional setup [43].  
SOCS is one primary dependent variable for SOC estimation, with local climate, terrain conditions, and 
spectral parameters independent variables, depending on the study scenario[39]. 
Prediction accuracy depends on various factors, like soil condition, variability of input characteristics, 
surface area with varying moisture, roughness due to vegetation and crop, and atmospheric conditions 
during image acquisition. [44] 
The precision of prediction models based on data from multispectral bands of different satellites was 
recorded as RPD between 1.4 to 3.1 and RPIQ between 1.8 to 2.1 [18].Prediction accuracy is obtained by 
ML/DL model or techniques or approaches bythe Ratio of Performance to Deviation (RPD), coefficient of 
determination (R2), and Root Mean Square Error (RMSE) [45]. 
 
RESULTS 
LULC performance results captured in Table 3 relateto applications in LULC landscape classification and 
mapping vegetation using Landsat-8 and Sentinel-2 data for a matrix view. 
 
Table 3. Performance Accuracy Matrix 

Training Model Accuracy Accuracy check by RS Satellite Reference 
SVM 0.758± 0.017 Confusion Matrix Sentinel-2 [11] 
EGB 0.751± 0.017 Confusion Matrix Sentinel-2 [11] 
RF 0.739± 0.018 Confusion Matrix Sentinel-2 [11] 
DL 0.733± 0.0023 Confusion Matrix Sentinel-2 [11] 
CART 0.8924 Confusion Matrix Sentinel-2 [19] 
RF 0.9145 Confusion Matrix Sentinel-2 [19] 
GTB 0.8771 Confusion Matrix Sentinel-2 [19] 
SVM 0.7354 Confusion Matrix Sentinel-2 [19] 
CART 0.9352 Confusion Matrix Landsat-8 [19] 
RF 0.9586 Confusion Matrix Landsat-8 [19] 
GTB 0.9533 Confusion Matrix Landsat-8 [19] 
SVM 0.8496 Confusion Matrix Landsat-8 [19] 
CART 0.8564 Kappa coefficient Sentinel-2 [19] 
RF 0.8859 Kappa coefficient Sentinel-2 [19] 
GTB 0.8358 Kappa coefficient Sentinel-2 [19] 
SVM 0.7628 Kappa coefficient Sentinel-2 [19] 
CART 0.9136 Kappa coefficient Landsat-8 [19] 
RF 0.9448 Kappa coefficient Landsat-8 [19] 
GTB 0.9337 Kappa coefficient Landsat-8 [19] 
SVM 0.7999 Kappa coefficient Landsat-8 [19] 
 
A confusion matrix describes the performance of a classification model for which True-False values are 
known. The matrix is organized as shown in Table 3 below. 
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Table 4. Confusion Matrix 
 
 

Actual Values 
True (T) False (F) 

Predicted values True (T) TT TF 
 False (F) FT FF 

 
In a confusion matrix, the overall accuracy is (All Correct / All) = (TT + FF) /(TT + TF + FT + FF).  
With Sentinel-2 data, SVM performed better in LULC when compared with EGB RF, and DL.Kappa 
coefficient estimates the degree of agreement between two data sets collected on different instances. In 
the case of performance results of various algorithms, Landsat-8 and Sentinel-2 data were used as two 
separate instances. Landsat-8 had better results for LULC performance. 
 
DISCUSSION 
Data science has several unsolved challenges relating to data inadequacy, developing reasoning skills, and 
understanding architectures with solutions. Next-level challenges are modeling physical phenomena 
using heterogeneous data and developing algorithms relating to spatial, temporal, and spectral data. 
Although the initial and available RS framework caters to most research tools for analysis, more work is 
needed in analyzing applications. It requires skills in signal processing, electromagnetics, and 
multisensory systems. These all add to a genuinely multidisciplinary approach [2]. 
ML techniques are useful in identifying important features and choosing appropriate environment 
variables. It also improves the model's accuracy to predict ecological phenomena. The decision-tree-
based random forest is an efficient machine-learning model tested in many studies. These decision tree 
models are efficient in managing numerous variables when compared with other parametric models to 
address multiple collinear ties[44]. 
When classification and regression tasks are compared, the regression algorithm is noted as more 
accurate and performed better than classification algorithms [18]. 
 
CONCLUSION 
In agricultural practices, data available from multiple sources are analyzed to arrive at a decision. Data 
plays a significant role in the process of classification and related regression accuracy. Similar data from 
different sources may increase the scope of ambiguity while analyzing agricultural applications of 
measured accuracy. The results from different case studies indicate dynamism in measured accuracies in 
classification and regression. The attributes can be due to prolonged change processes in agricultural 
farm data, the time to validate the model depends onnatural processes like seasonal crop growth, crop 
removal/cutting, etc. 
The prospective models predict data and advancement, using machine learning as a statistical tool. It may 
not be a cure-all solution. Researchers are studying various areas and factors to reinforce results through 
a systematic understanding, avoiding unauthentic relations. The results of such studies indicate the 
possibility to predict the ecological phenomena, while simultaneously improving the accuracy of such 
models [44] with automated methodologies derived from the most appropriate environmental variables. 
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