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ABSTRACT 
Soil Organic Carbon (SOC), generally located within a meter of the topsoil layer,is the largest source of terrestrial carbon 
as a pool. In the last few decades, the rapid urbanization and industrial growth have drawn attention to SOC Stock 
(SOCS) in soil management,equating its correlation with carbon emissionsleading to global warming in the majority of 
the terrestrial environments. Such types of transformed global warming can be correlated with initial soil organic 
carbon stock size. Estimating soil organic carbon stock may thus help to limit the earth system model estimates in global 
warming [1].  This paper reviews commonly used predictive statistical models to forecast SOC estimation usingpopular 
algorithms in machine learning (ML) and deep learning (DL). Input data used to 'train' by different algorithmscan 
predictSOCS with variances in their performance. This study covers relative comparisons of Artificial Neural Networks 
(ANN), Supporting Vector Machines (SVM), and other Deep Learning (DL) models used in computing SOCS with 
multispectral remote sensing data. In general, comparing and choosing the optimal technique is an exciting task.  
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INTRODUCTION 
Carbon sequestration is aprospectiveapproach to mitigating climate [1] and was highlighted at COP21 – 
the 21st Conference in the United Nations (UN) Convention on Climate Change. Soil organic matter 
comprises microbial biomass dissolved and humas from organic substances. These substances dissociate 
into nutrients useful for vegetation and plant growth, adding essential ingredients to soil and its 
structural health [2]. The extent of soil organic carbon stored (SOCS) in soilmay vary on the adjoining 
landscape, local climate (temperature, rainfall, and precipitation), land inclination /slope, farming 
methodologies adopted for soil nutrition, etc. [3]. 
SOCS in the soil is ameasure of soil fertility correlating its richness to growing vegetation and agricultural 
products, including crops[4]. Incidentally, the soil has the most extensive stock of organic carbon on the 
earth, covering nearly ¾ of the total carbon reserve of the earthly ecosystem. It interacts closely with the 
climatic, atmospheric, and land cover changes[5]. SOCS estimation is important at a local, regional and 
global level due to its influenceon agriculture production, climate control, and global warming 
mitigation[6].  
SOC,usually stored in the soil at a 20 – 30 cm depth, is an important terrestrial carbon pool deposit[7]. 
SOCS depletion with land-use changesover time is a worldwide environmental issue now [8]. 
Urbanization and extensive human usage of sub-soil matters release stored carbon in the soil, releasing 
carbon dioxide into the atmosphere[9]. Soil samples from 0–20 cm soil depths are easier to access for 
collecting soil samples followed bytestingin the laboratory to measure SOC and derived SOCS.These soil 
samples are tested using 400–700 nm wavelength spectroscopic methods located near the designated 
study locations.The soil reflectance spectra of these study areas, as measured by appropriate satellite 
bands, are helpful to evaluate the performance precision of related trained models [10].  
In principle, an estimated SOCS increase of 0.4% per year is considered adequate to reduce Green House 
Gas emissions[11]. SOCS affects the soil characterization through its physical, chemical, and biological 
properties,thereby enhancing water and nutrient retention in soil[12]. The availability of consistent and 
reliable data on SOCS is essential for the systematic monitoring of SOC and spatial mapping capacity[2]. 
Related works in Soil Organic CarbonStock (SOCS) 
Importance of SOC: (Climate – Greenhouse warming – Soil Health – Agricultural benefit) 



BEPLS Spl Issue [5] 2022              369 | P a g e             ©2022 AELS, INDIA 

SOC content in soil is dynamic in space and time intervals. Such dynamism is related to carbon 
sequestration, land usage, degradation due to human interventions, and climatic conditions[6]. An 
improved understanding of SOCS conditions spatially and time series is indispensable for climate change 
mitigation options. Managing and parameterizing SOCS is essential for an evolved climate control policy 
globally impacting the carbon cycle. Urbanization, changes in Land Use (LU), harmful agricultural 
practices, etc., play crucial factors in SOC changes[13].  
Regular SoC estimation and monitoring are necessary over spatial and time domains in a specific 
landscape scale to understand the overall dynamics of SOC changes [7].Regular and updated information 
on land use and SOCS in soils, monitoring, and mapping of SOCS changes in regional areas are essential to 
improve decisions on land degradation management and policy developments [8]. 
A data-centric statistical model to map SOCS in space and time is needed for an annual SOCS prediction 
considering the dynamism in SOC content. The process requires a SOCS capacitymap from a reference 
year as a baseline [14]. Many countries across the globe have commonly adopted this methodology to 
report carbon trends to the UNCCD (IPCC, 2006; Mattina et al., 2018). 
SOCS monitoring needs to maintain SOC data to achieve an appropriate target to mitigate climate changes. 
Existing global SOC maps have limited information and coverage at a regional scale to make decisions to 
track carbon sequestration on a time scale. The prediction map as an estimation will need a regular or 
timely update of SOC measurement to monitor SOC changes and align how it is supplementingto ease 
climatic issues [15]. 
Theland-use changes show that converting forestland and wetland to cropland caused SOCS loss fromthe 
soil. Such changes challenge our ecosystem, adversely impacting SOCS[16]. The predictability of SOCS 
changes requires technological advancements in collecting and processing satellite-based remote sensing 
data[17]. It also involves soil data from different regional and global databases in published documents or 
databases to supplement SOCS predictability analysis [5]. 
Soil samples collected from study plot areas are primary field data elements tagged with positional 
information (latitude, longitude) for georeferencing. Under standard laboratory procedures, the soil 
samples were examined for SOC-related tests using total oxidized carbon and wet oxidation measurement 
as per standard laboratory procedures [18].  
SoC Estimationusing Multispectral Remote Sensing Data 
The traditional field SOC sample collections followed by laboratory testing are relatively expensive and 
time-consuming[21]. Such limitations encouraged researchers to explore using Geographical Information 
Systems (GIS) and Remote Sensing (RS) techniques to map and monitor land uses [22].  
Soil reflectance spectroscopy using sensors mounted on satellites has gained momentum for soil organic 
carbon estimation in various research areas, with the methodologies and reported results published in 
each study [20].The current trend to source RS data to evaluate SOC and SOCS is a cost-effective, readily 
available, and non-destructive approach for SOCS estimation [19]. It, however, still uses the field data as 
reference data to calibrate and benchmark the SoC estimation model [23]. 
Widely available spatial and time domain datasets and advanced computer vision through deep learning 
and other ML techniques eased the satellite image translation and related applications 
[24].Advancements in Deep Learning (DL) algorithms have rapidly increased the popularity ofRS image 
analysis in the last few years. Major DL development related to the remote-sensing data study targets 
address the spatial image resolution, study area type, and classification accuracy achieved. DL applied for 
remote sensing image analysis of SOC includes segmentation, classification, and image analysis of Land 
Use and Land Cover (LULC)[25]. 
The advent of multispectral satellite data availability as a source of spectral data and technically advanced 
data processing in deep learning algorithms made it a cost-effective, technically viable process to estimate 
soil organic carbon (SOC) in spatial coverage of SOC maps[26].  
Satellite images from a study area can facilitate connecting SOC variation with time [8]. The acquisition of 
satellite data at regular intervals opened up the option of analyzing SOC contents in time series [18]. ML 
algorithms like Random Forest (RF), Support Vector Machine (SVM), and Boosted Regression Test (BRT) 
modeled the spatial variability of SOCS with maximum likelihood and supervised classifications [8].  
For remote sensing data, satellite images from the multispectral spectral bands of similar wavelengths are 
used for random forest regression in the SOC estimation and SOCS prediction. [10]. Remote sensing (RS) 
data is available from different satellites for SOC mapping in spatial resolution and time domain with 
varied spectral resolution. Inaccurate SOC estimations may occur in the case of the lower spectral 
resolution of satellite sensorbands in the visible and SWIR spectrum relevant to organic matter 
absorption[27]. Spectral data fromthese bands are potential indicators in the spatial mapping of SOC. 
Unlike a spectral resolution, a spatial resolution haslessimpact on predictions with dynamically changing 
soil characteristics[18]. 
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Digital Soil Mapping (DSM) methods are part of SOC predictive models that use RS data of easy data 
availability and extensive spatial and time-series distribution. The RS variables widely used are surface 
reflectance, vegetation index, and band ratios relating to vegetation and soil [28].   
In SOC mapping, band ratios or surface reflectance are effective parameters in bare soils. Connections 
between vegetation and SOC indicate RS data produces enhanced vegetation growth status over a longer 
time duration[29]. In vegetative areas, Normalized Differences Vegetation Index (NDVI) ishelpful[30], 
though it may not enhance mapping accuracy significantly [31]. The other Multispectral RS data relevant 
to SOC mapping available for spectral and spatial resolution mapping and band combinationsare 
Brightness Index (BI) and Greenness Index (GI), as covariates in SOC estimation[32].The surface 
reflectance spectral data from satellite bands are considered independent variables in models evaluating 
the influence of spectral data to predict SOCS [29]. A list of other helpful predictor variables 
includesWetness Index (WI), Vegetation Temperature Condition Index (VTCI), and Compound 
Topographic Index (CTI)[33]. 
Machine Learning Applications for Predicting SoCS 
Remote Sensing data from satellite images supplements estimating SoC Stock (SOCS) trained models. The 
performance accuracy of predictive statistical models, such as random forest, partial least square 
regression, etc., can be likened to assessing the SOC content.Predicting soil organic carbon in spatial 
distribution for land management relates to carbon emission and soil health[34].Performance 
comparison of thesemodels suggeststhat the predictability is not entirely dependent on the spectral 
behavior [35].  
Different algorithms, extrapolation techniques such as Decision Trees (DT), Support Vector Machines 
(SVM), Artificial Neural Networks (ANN), and other multivariate regression techniquesare applied for 
statistical predictions. The performance comparisons are set by parameters like Ratio of Performance to 
Deviation (RPD), Root Mean Square Error of Cross-Validation (RMSECV) tests, andCoefficient of 
Determination (R2) [36]. 
ML involves a process to learn from dataconsisting of a set of instances described by a group of features 
or variables.Upon completingthe learning process, the training model isapplied to a collection of new 
testing data to classify, predict, or cluster[24]. 
SOC prediction using a Convolutional Neural Network (CNN) is encouraging compared with Random 
Forest (RF) with multiple environmental factors. The results show improved accuracy of CNN with added 
land surface variates and other environment variables. CNN had higher prediction performance than RF 
regardless of the variables added, indicating CNN is a good soil mapping approach in a regional setup 
[29]. 
ML tasks are organized into supervised or unsupervised models, depending on the learning type or the 
learning models employed to implement classification, regression, clustering, and dimensionality 
reduction[37].In case inputs are partially available and some outputs arepartly missing in a dynamic 
environment,it constitutes reinforcement learning.Training the models, testing, and validating final 
predictions results for all input spectral data remain the same. The trained,supervised model can predict 
the outcomes (labels) of a few missing test data. For unsupervised learning,no separate test or training 
data is labeled. The input data is processed to identify a pattern [37]. The training data is presented as 
input in supervised learning while the corresponding output constructs a rule mapping input to output 
[38]. 
Prediction Models 
Regression constitutes a supervised learning model to provide output predictionthat varies according to 
the input variables. Standard predictive models are linear regression, multiple linear regression, and least 
squares regression. 
Linear regression models correlate the distribution of dependent variablesusing a linear combination of 
independent variables (predictors). SOCS is one primary dependent variable for SOC estimation, with 
local climate, terrain conditions, and spectralparameters independent variables, depending on the study 
scenario. [39] 
Multiple Linear Regression (MLR) is a statistical technique using multiple variables to predict a 
responsive outcome (predict) of a dependent variable based on two or more independent variables. It is 
an extension of Linear Regression of one explanatory variable.[34] 
Partial Least Squares Regression (PLSR) defines linear relationsamong the variables, although the 
connections are not always linear.It helps to correlate soil organic carbon stocks and spectral information 
with statistically derived spectral characteristics. The mapping of PLSR models built on a local field study 
to a regional level is often limited due to wider spatial variation in SOC contents. [40] 
Support Vector Machine (SVM) is a supervised ML algorithm used in SOCS estimation forrelated 
classification and regression. SVM tries to find a hyperplane to classify the data points distinctly in n-
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dimensions[25]. The kernel scale and corresponding penalty are adjusted in SVM modeling to convert 
training data in a non-linear decision surface to a linear equation of higher orders. SVM model 
performance is good in soil mapping [39].  
Random Forest (RF)is a Supervised Machine Learning model used in regression and classification 
problems. In RF, the decision trees relate probable predictors with the target variables. Decisiontrees are 
builtinto RF to ensure a stable model where every tree is trained individually with distinct training 
data[41]. In RF prediction, it averages the results from all trees individually trained. RF trains faster than 
decision trees, working only on a subset of features[42].Clustering is an unsupervised learning model for 
natural data grouping – for example, the k-means technique[43]. 
Prediction accuracy depends on various factors, like soilcondition, variability of input characteristics, 
surface area with varying moisture, roughness due to vegetation and crop, and atmospheric conditions 
during image acquisition. [44] 
The precision of prediction models based on data from multispectral bands of different satellites was 
recorded as RPD between 1.4 to 3.1 and RPIQ between 1.8 to 2.1 [18]. Prediction accuracy is obtained by 
ML/DL model or techniques or approaches with Ratio of Performance to Deviation (RPD), coefficient of 
determination (R2),and Root Mean Square Error (RMSE)[45]. 
RMSEP (Root Mean Square Error of Prediction) measuresactualinstanceslinked to reference values, 
indicating an estimate of performance deterioration. 
 

Table 1:   Machine Learning Models for SoC Forecasting as publishedwith scope 
Training Model Test RMSEP (%) Test R2p RPD Reference 

PLS 0.27 0.66 1.45 [18] 
CB 0.26 0.68 1.52 [18] 
CB 0.28 0.56 1.4 [18] 
SVM 0.28 0.65 1.41 [18] 
CB 0.26 0.66 1.52 [18] 
RF 0.24 0.74 1.65 [18] 
RF 0.27 0.59 1.46 [18] 
BPN 0.53 0.86 2.84 [45] 
BPN 0.61 0.83 2.46 [45] 
MLP 0.55 0.86 2.70 [45] 
MLP 0.50 0.88 2.98 [45] 
LeNet5 0.53 0.87 2.90 [45] 
LeNet5 0.54 0.86 2.79 [45] 
DenseNet10 0.49 0.88 3.13 [45] 
DenseNet10 0.49 0.89 3.053 [45] 
ML 0.546 0.348  [39] 
RF 0.528 0.39  [39] 
SVM 0.551 0.341  [39] 
SGB 0.539 0.367  [39] 
RF 0.768 0.83  [46] 
SGB 0.782 0.8  [46] 
SVM 0.792 0.79  [46] 
ANN 0.918 0.76  [46] 
MLR 0.972 0.75  [46] 
PLSR 0.995 0.75  [46] 
BRT* 0.497 0.266  [47] 
RF 0.502 0.252  [47] 
SVM 0.488 0.285  [47] 
BPNN 0.56   [48] 
FPNN 0.68   [48] 
MLPNN 0.72   [48] 
GRNN 0.51   [48] 
PLS  0.792  [49] 
RF  0.808  [49] 
CNN  0.878  [49] 
PLSR 0.73 0.51 1.43 [50] 
PLSR 1.23 0.56 1.51 [36] 
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CHALLENGES 
Root Mean Square Error (RMSE) measures test/train data error with cross-validation using split data 
[44]. 
Prediction accuracy is obtained by ML/DL model or techniques or approaches using the Ratio of 
Performance to Deviation (RPD), Coefficient of Determination (R2), and Root Mean Square Error (RMSE) 
[45]. 
The precision of prediction models based on data from multispectral bands of different satellites was 
recorded as RPD between 1.16 to 1.65[18]. 
A well-split data portion results in a reasonable assessment of the model using a trained dataset executed 
for unknown instances. Prediction accuracy depends on various factors, like soil condition, variability of 
input characteristics, surface area with varying moisture, roughness due to vegetation and crop, and 
atmospheric conditions during image acquisition[33]. 
 
DISCUSSION 
Machine learning models like SVM, RF, and SGB work better (more accurately) than MLR when compared 
with RSME-CV (cross-validation) of each model for model performance assessment[51].  
The regression models in ML, like Support Vector Machine (SVM), Random Forest Regression (RFR), 
Multiple Linear Regression (MLR), and Stochastic Gradient Boosting (SGB),are tested to set the training 
model[41]. It is then compared with independent soil samples to validate the model in an extrapolated 
area. The performance comparison of these models indicatesML techniques have improved results 
compared to MLR and RFR, thereby providing betterprecision in most instances[52].  
MLR performs low to correlate non-linear relations betweendependent and independent variables while 
predicting soilparameterson unsampled positions[39]. The predictive value performance comparisons 
are set by parameters – for example,Coefficient of Determination (R2), Root Mean Square Error of Cross-
Validation (RMSECV) tests, and Ratio of Performance to Deviation (RPD) [36]. The prediction 
performances vary among ML algorithms and models, with few performing reliably and maintaining 
enhanced accuracy in SOC prediction (R2 = 0.470, RMSE = 0.437 [47]. 
Deep Learning models produce good results in RS-based SOC mapping, despite a few limitations like 
acquired soil samples, laboratory tests through laborious, expensive computational time, data acquisition 
with cloud coverage,and inclination for over-fitting models[53].The observations on SOCS predictions 
resulting in inaccuracy or inconsistency can be due to the dynamism involved in SOC values on varying 
local factors[54]. 
 
CONCLUSION  
SOC mapping and prediction using MS RS data work through a machine learning framework. Researchers 
explore improved models like deep learning and RF [55]. Regression models and machine learning 
improve accuracy [56] with advanced theory and well-developed software applications. A combination of 
RSwith field data through laboratory tests provides a practical approach [14]. 
RF model emerged as the promising variable identifiersto predict SOCS and build a model for 
extrapolation and generating the digital SOC map[57]. Its accuracy is assessed by the corresponding 
RMSE and coefficient of determination (R2) for comparison with peer algorithms.However RF model 
requires special attention to its regression tree development[58].  
Irrespective of the advantages of RF models in SOCS prediction, there are few constrictions in respective 
regression tree development. RF modelsthat underestimate the SOC high values in a training dataset can 
be fixed by exploitingsupplementary datasets[46]. 
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