Bulletin of Environment, Pharmacology and Life Sciences Bull. Env. Pharmacol. Life Sci., Special Issue [1]2022 : 1050-1059 ©2021 Academy for Environment and Life Sciences, India Online ISSN 2277-1808 Journal's URL:http://www.bepls.com CODEN: BEPLAD ORIGINAL ARTICLE

Phytocompound identification from *Cuscuta reflexa*, *Foeniculum vulgare* and *Tinospora cordifolia* using gas chromatographymass spectrometry and their efficiency on removal of metal toxicity by an *In Silico* approach

A. Devadoss¹, P. Dharmalingam² and S. Chandraleka³

¹Department of Chemistry, M.I.E.T. Engineering College, Trichy - 620 007, Tamil Nadu, India. ^{2,3}Department of Chemistry, Urumu Dhanalakshmi College, Trichy - 620 019, Affiliated to Bharathidasan University, Tamil Nadu, India *Email ID: devadoss1981@yahoo.com

ABSTRACT

Biological approaches that use the plants for silver nanoparticles provide enhanced platforms for nanoparticle synthesis as they are free from toxic chemicals and additionally provide natural capping agents. Nowadays, the use of plant extracts has also reduced the expenditure of the microorganism isolation and also the culture media enhancing the expenditure, competitive possibility above nanoparticles synthesis by the microorganism. Synthesis of nanoparticles using plant extracts are considered as one of the most adopted methods of green and eco-friendly production of nanoparticles where it also has a special advantageous application that the plants are widely distributed, easily available, much safer to handle and act as a source of several metabolites. The present study aims to find the presence of phytochemicals in the selected plants such as methanolic extracts of Cuscuta reflexa leaves Foeniculum vulgare stem and Tinospora cordifolia fruits and also find the docking analysis of these plants by using suitable binders. The result proves that the plant extracts contain various important bioactive components and this may be the results of its various activities. The docking analysis also proves its efficiency.

Keywords: Cuscuta reflexa, Foeniculum vulgare, Tinospora cordifolia, GC-MS, In silico, Metal toxicity

Received 12.02.2022

Revised 27.03.2022

Accepted 11.04.2022

INTRODUCTION

Almost 70 % of the industrial wastes are produced by developing countries and they are disposed of untreatably into the nearby water bodies where they contaminate the existing water sources. Every year, the world generates around 400 billion tons of industrial wastes, mostly in the form of different chemicals that are discharged either directly or indirectly into the aquatic environment without any adequate treatment to remove their harmful effects [1]. The quality of the groundwater can be determined by assessing its physical, chemical and bacteriological properties of it. These parameters of the groundwater may be varied and it is greatly influenced by natural processes such as geological formations and anthropogenic activities. Industrial waste and municipal solid waste have emerged as one of the leading causes of pollution of surface and groundwater [2].

Many researchers have been indulged in the various studies that concentrate on assessing the groundwater quality and pollution sources influenced by industrial and natural processesworldwide. The principles governing the chemical characteristics of groundwater and the influence of anthropogenic activities are well documented in many parts of India [3]. Occasionally the nanoparticles synthesis from the plant sources and its extracts can be advantageous over other biological synthesis processes [4], which involve the very complex procedures of maintaining microbial cultures [4]. Synthesis of nanoparticles with certain microbes such as the using fungi like *Fusarium oxysporum* [5], *Penicillium* sp. [6] and using some bacteria such as *Bacillus subtilis* etc., [7] has now come into the field with higher efficiencies.

Synthesis of nanoparticles using plant extracts are considered as one of the most adopted methods of green and eco-friendly production of nanoparticles where it also has a special advantageous application that the plants are widely distributed, easily available, much safer to handle and act as a source of several metabolites [8] The aim of the present study is to identify the Phyto-based nanomaterials using three

different plants namely, *Cuscuta reflexa*. Roxb, *Foeniculum vulgare*. Mill and *Tinospora cordifolia* (Thunb.) Miers of recent advances in tap water and wastewater treatment processes is provided. The activity of these plants may be the presence of secondary metabolites. This study especially concentrates on the identification of the phytocompounds present in the extract as well as the molecular docking analysis.

MATERIAL AND METHODS

The *C. reflexa* leaves were collected fresh from the foothills of the Nilgiri region and the

F. vulgare stem and *T. cordifolia* fruits were collected from the Yercaud regions of the Salem district. The collected parts of the various plants said above was shade dried and powdered to contribute to 57 g, 46.4 g and 37.8 g of the plant extracts before shade drying.

SAMPLE PREPARATION

The 10 g of each plant (*C. reflexa, F. vulgare* and *T. cordifolia*) were taken and added to 100 ml of Milli Q water and then boiled at a temperature of 80°C for approximately 45 minutes and the obtained mixture was filtered using Whatman Filter paper No. 1 (HiMedia Labs Ltd.) separately to give the aqueous extracts and then were stored at 4°C for further use.

GAS CHROMATOGRAPHY-MASS SPECTROMETRY PROTOCOL

Gas chromatography-mass spectrometry (GC-MS) allows users to selections cleaved by electron ionization (EI), and then cleave precursor ions *via* collision-induced dissociation (CID), this enables a detailed analysis of partial structures. A production scan can be used to easily discriminate between structural isomers and positional isomers, which are hard to identify from EI mass spectra obtained with a single GC-MS system. That makes production scans ideal for predicting partial structures. Using this technique the samples were prepared according to the manual provided and loaded in the system. The analysis of the samples was done by running the multiple sample analysis parameters and the processed data was obtained and stored for further clarifications. The single sample analysis and the multiple sample analysis chromatographs were obtained.

DOCKINTG ANALYSIS

Molecular docking study plays an important role in the field of food, drug pollution treatment and also to find out the binding affinity between the compounds. This study was designed to find the binding efficiency of the derived phytochemical compound from the GC-MS results obtained with the CusBA heavy-metal efflux complex from *Escherichia coli*. The molecular docking results show that the phthalic acid from the phytochemical derived from the three different plant extracts have been showing better binding activity with the heavy metal complex, which indirectly depicts that the plant extracts have a n efficient ability to deteriorate or remove heavy metal toxicants from the solvent effluents and also the phytochemical compoundis satisfying Lipinski's rule of 5 and ADMET properties, to be an inhibitor.

RESULT AND DISCUSSION

Now-a-days, GC-MS studies have been highly used for the analysis of phytocompounds present in the different extracts of plants [9-12] show that there is a presence of the flavonoid compounds namely indigotin, indirubin, tryptanthrin, isatin, rutin, lupeol in the *Wrightia tinctoria* leaf extracts using GC-MS studies. Whereas, Rangaswami and Rao [13] initially showed that there is a presence of the terpene compounds α -amyrin and β -amyrin respectively in the leaf, seed, bark, mature and immature seed pods extracts of the leaf extracts of the plant.

Similarly, later on, Pritam and Sanjay [14] reported that there was another terpene compound lupeol in the leaf, seed, bark, stem extracts of the plant on GC-MS analysis. Similarly, the study reported by Selvaraj and Prassana [15] show that the analysis of methanolic stem extract of *T. cordifolia* has eleven compounds, which including 2,4-bis(1,1- dimethylethyl), hepta-decenal, 3,7,11,15-tetramethyl-2-hexa-decen-1-ol, hepta-decyl- trifluoro-acetate, phenol, trifluoro-acetoxy hexadecane, 9-eicosene, (e)- $C_{20}H_{40}$ 7 24.47 octadecane, 3-ethyl-5-(2-ethylbutyl), di-n-decylsulfone, hexamethyl-cyclotrisiloxane cyclohexane,1,1'-(2-tridecyl-1,3-propanediyl)bis and 1,4-didecyl-cyclohexane.

In concordance with this, the present study has reported that the chloroform extracts of the plant, *C. reflexa* leaves, *F. vulgare* stem and *T. cordifolia* fruits show the following observations as shown in the Table 1 compound were identified by GC-MS analysis of the *C. reflexa* leaves are shown in Figure 1. The compounds are cyclooctasiloxane, hexadecanoic acid, phthalic acid, 9-octadecenoic acid, heptadecanoic acid, methyl 10-oxohexadecanoate, eicosa methyl cyclodeca siloxan, eicosanoicacid, cyclodecasiloxane, tetracosamethyl-cyclododecas.

Figure 2 showed the compounds were identified by GC-MS analysis in *F. vulgare* stem. The compounds are hexadecanoic acid, phthalic acid, ethyl linoleate, 9-octadecenoic acid, ethyloleate, heptadecanoic acid, methyl 10-oxohexadecanoate, eicosamethyl cyclodecasiloxan, eicosanoic acid and iron.

The results of the GC-MS analysis of T. cordifolia fruits are shown in Figure 3. Several different

phytoconstituents are identified in the sample 3 such as hexadecanoic acid, phthalic acid, ethyl linoleate, 9-octadecenoic acid, 6-tridecenoic acid, ethyl oleate, di-(9- octadecenoyl)-glycerol, 2-cyclopentene-1-tridecanoic acid, heptadecanoic acid, 1H-purin-6- amine, methyl 10-oxohexadecanoate and eicosanoic acid.

The Phthalic is thought to originate from lignin-type organic matter (phenols) which is converted to aromatic diacids by microbial action. Phthalic acid is believed to get subjected to anaerobic treatment and is mineralized by anaerobic lake sediment. From the compound structure, the results of the present study depict that this compound is an aromatic dicarboxylic acid, with the molecular formula C_6H_4 (COOH)₂. In the present study, it is clear that all the three plant extracts have shown the presence of Phthalic acid through GC-MS analysis and it is clear that this compound would serve as a strong environmental waste deterioration when added in proper concentration to the water bodies. The same is later depicted from the Docking studies.

Table 1 Bioactive compound identified using GC-MS				
Figure Numbers	Details			
	# RT Peak Name Res Type Area Amount R. Match			
	1. 12.566 Cyclooctasiloxane, hexadecam TIC 297052 0.440 768			
	2. 19.484 Hexadecanoic acid, methyl es TIC 2.480e+6 3.678 85			
	3. 20.341 Phthalic acid, butyl hexyl e TIC 1.133e+6 1.681 957			
	4. 23.497 9-Octadecenoic acid (Z) -, me TIC 1.092e+7 16.191 841			
	5. 23.633 9-Octadecenoic acid (Z) -, me TIC 2.448e+6 3.630 826			
	6. 24.052 Octadecanoic acid, methyl es TIC 1.110e+7 16.460 842			
	7. 24.861 Ethyl Oleate TIC 8.831e+6 13.095 816			
Figure 1	8. 25.240 Hexadecanoic acid, butyl est TIC 2.626e+6 3.894 742			
	9. 25.394 Heptadecanoic acid, 15-methy TIC 6.296e+6 9.336 728			
	10. 27.513 Metnyl 10-0x0nexadecanoate 110 1.418e+6 2.102 749			
	11. 27.650 Elcosamethylcyclodecasiloxan 11. 9/1186 1.440 839			
	12. 27.903 Elcosanoic acid, methyl este TIC 1.0800+6 1.602 853			
	13. 20.919 Octabetalloit actu, butylest Tic 1.314e+0 1.349707			
	15 - 36 249 Tetracosamethyl-cyclododecas TIC 1.385e+6 2.054 864			
	16 38 885 Cyclodecasilovane eicosamet TIC 2 103e+6 3 119 761			
	17 41 073 Tetracosamethyl-cyclododecas TIC 2 068e+6 3 067 821			
	18. 43.071 Tetracosamethyl-cyclododecas TIC 2.200e+6 3.262 819			
	# RT Peak Name Res Type Area Amount R. Match			
	1 19 482 Hexadecanoic acid methyl es TIC 3 804e+6 3 930 861			
	2 20 336 Phthalic acid butyl beyvle TIC 1 202e+6 1 242 945			
	$\frac{2}{3}$ 21 116 Hovedocanoic acid othyl ost TIC 1 0260+6 2 000 712			
	4 23 357 Fthyl linoleate TIC 894070 0 924 864			
	5 23 502 9-Octadecenoic acid (7)- me TIC 1 634e+7 16 877 850			
	6236369-Octadecenoic acid (Z), me TIC 1.537e+ 61.646825			
Figure 2	7 24.057 Octadecanoic acid, methyl es TIC 1.239e+7 12.802 844			
	8 24.870 Ethyl Oleate TIC 1.671e+7 17.263 807			
	9 25.245 Hexadecanoic acid, butyl est TIC 6.430e+6 6.643 762			
	$10^{-25}400$ Hentadecanoic acid 15-methy TIC 9 663e+6 9 983 741			
	11 27512 Mathyl 10-ovohevadecanoate TIC 1 095e+6 1 122 747			
	12 27.512 Methyl 10-0x0hexadecanoade Tic 1.05000 1.152747			
	12 27.040 Eleosamethyleyclodecashoxan file 1.059e+0 1.900 701			
	1.5 27.900 Elcosatioic aciu, methyl este 110 1.1050+6 1.204 852			
	14 28.924 Uctadecanoic acid, butyl est TIC 3.4/2e+6 3.588 7/6			
	15 29.974 Eicosamethylcyclodecasiloxan TIC 2.405e+6 2.485 725			
	20 43.063 Iron, monocarbonyl- (1,3-buta TIC 3.126e+6 3.229 725			

Devauoss et ui	Devad	loss	et	al
----------------	-------	------	----	----

	# RT Peak Name R	es Type Area A	mount R. Mato	ch	
	2 19 490 Hexade	canoic acid me	thyl es TIC 4 1	85e+6 4 007 8	59
	2 10.100 Hexade	and butul hor	$rrl \circ TIC 2022$	22 0 200 050	
	5 20.550 Plitilalit	aciu, butyi ilez	$\frac{1}{2}$	25 0.290 950	
	5 21.118 Hexadeca	noic acid, ethy	1 est 11C 3.424	e+6 3.279 731	
	6 23.358 Ethyl lino	leate TIC 5703	60 0.546 850		
D ¹	7 23.506 9-Octadeo	cenoic acid (Z) -	-, me TIC 2.082	2e+7 19.933 84	:3
Figure	³ 8 23.637 9-0ctade	cenoic acid (Z)	-, me TIC 3.464	4e+6 3.317 837	,
	9 24.061 Octadeca	noic acid, meth	yl es TIC 1.668	Be+7 15.975 85	51
	10 24.740 6-Trideo	enoic acid, 13-	(2-cy TIC 1.12	2e+6 1.074 86	8
	11 24.875 Ethyl Ol	eate TIC 2.550	e+7 24.420 81	9	
	12 24 994 DL (9-	OCTADECENO		- TIC 63788 0 0	61 789
	12 24.774 DF(74)			110037000.0	700
	15 25.253 2-Cycl	opentene-1-tri	decanoic IIC I	1.8696+6 1.790	/93
	14 25.405 Hepta	decanoic acid, 1	15-methy TIC	1.688e+7 16.16	50 739
	16 27.082 1H-Puri	n-6-amine, [(2-	fluoro TIC 58	3026 0.558 743	3
	17 27.510 Methy	l 10-oxohexade	ecanoate TIC 2	.705e+6 2.590	726
	18 27 904 Ficosa	noic acid meth	vl osto TIC 1 5	880+615208	67
	10 27.704 Licosa				07
Plot 1	<u>. 10-22-201912</u>	<u>-49-04 pm.s</u>	<u>sms - 10/22</u>	<u>/2019 12:49</u>	<u>PM</u>
Paramo	tore.		From D)ata Filo	
Peak W	lidth (sec)		4.0	ala i ne	
Slope S	ensitivity (SN):		20		
Tangen	t %:		10		
Peak Si	ze Reject (counts):		2000		
Smoothing: None					
0					
Spike T	hreshold Factor:		None		
Spike T Noise:	hreshold Factor:		None Peak to	o Peak	
Spike T Noise:	Betention Time	Area	None Peak to % of Total	o Peak Signal/Noise	Scan Description
Spike T Noise:	Retention Time	<u>Area</u> 501180	None Peak to <u>% of Total</u> 0.743	o Peak <u>Signal/Noise</u> 35	<u>Scan Description</u> Merged
Spike T Noise: 1. 2.	Retention Time 10.002 10.184	<u>Area</u> 501180 3.037e+6	None Peak to <u>% of Total</u> 0.743 4.504	D Peak Signal/Noise 35 48	<u>Scan Description</u> Merged Merged
Spike T Noise: 1. 2. 3.	Retention Time 10.002 10.184 10.409	<u>Area</u> 501180 3.037e+6 1.827e+6	None Peak to <u>% of Total</u> 0.743 4.504 2.710	D Peak Signal/Noise 35 48 43	<u>Scan Description</u> Merged Merged Merged
Spike T Noise: 1. 2. 3. 4.	Retention Time 10.002 10.184 10.409 12.566	Area 501180 3.037e+6 1.827e+6 297052	None Peak to 0.743 4.504 2.710 0.440	D Peak Signal/Noise 35 48 43 20	<u>Scan Description</u> Merged Merged Merged Merged
Spike T Noise: 1. 2. 3. 4. 5.	Retention Time 10.002 10.184 10.409 12.566 19.484	Area 501180 3.037e+6 1.827e+6 297052 2.480e+6	None Peak to 0.743 4.504 2.710 0.440 3.678	D Peak Signal/Noise 35 48 43 20 122	Scan Description Merged Merged Merged Merged Merged
Spike T Noise: 1. 2. 3. 4. 5. 6.	Retention Time 10.002 10.184 10.409 12.566 19.484 20.341	<u>Area</u> 501180 3.037e+6 1.827e+6 297052 2.480e+6 1.133e+6	None Peak to 0.743 4.504 2.710 0.440 3.678 1.681	D Peak Signal/Noise 35 48 43 20 122 45 45	Scan Description Merged Merged Merged Merged Merged
Spike T Noise: 1. 2. 3. 4. 5. 6. 7.	Retention Time 10.002 10.184 10.409 12.566 19.484 20.341 21.115	<u>Area</u> 501180 3.037e+6 1.827e+6 297052 2.480e+6 1.133e+6 1.205e+6	None Peak to 0.743 4.504 2.710 0.440 3.678 1.681 1.786	D Peak <u>Signal/Noise</u> 35 48 43 20 122 45 47 200	Scan Description Merged Merged Merged Merged Merged Merged Merged
Spike T Noise: 1. 2. 3. 4. 5. 6. 7. 8. 9	Retention Time 10.002 10.184 10.409 12.566 19.484 20.341 21.115 23.497 23.633	Area 501180 3.037e+6 1.827e+6 297052 2.480e+6 1.133e+6 1.205e+6 1.092e+7 2.448e+6	None Peak to 0.743 4.504 2.710 0.440 3.678 1.681 1.786 16.191 3.630	D Peak <u>Signal/Noise</u> 35 48 43 20 122 45 47 298 35	Scan Description Merged Merged Merged Merged Merged Merged Merged Merged
Spike T Noise: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.	Retention Time 10.002 10.184 10.409 12.566 19.484 20.341 21.115 23.633 24.052	Area 501180 3.037e+6 1.827e+6 297052 2.480e+6 1.133e+6 1.205e+6 1.092e+7 2.448e+6 1.110e+7	None Peak to 0.743 4.504 2.710 0.440 3.678 1.681 1.786 16.191 3.630 16.460	D Peak Signal/Noise 35 48 43 20 122 45 47 298 35 145	Scan Description Merged Merged Merged Merged Merged Merged Merged Merged Merged
Spike T Noise: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.	Retention Time 10.002 10.184 10.409 12.566 19.484 20.341 21.115 23.633 24.052 24.861	Area 501180 3.037e+6 1.827e+6 297052 2.480e+6 1.133e+6 1.205e+6 1.092e+7 2.448e+6 1.110e+7 8.831e+6	None Peak to <u>% of Total</u> 0.743 4.504 2.710 0.440 3.678 1.681 1.786 16.191 3.630 16.460 13.095	D Peak Signal/Noise 35 48 43 20 122 45 47 298 35 145 134	Scan Description Merged Merged Merged Merged Merged Merged Merged Merged Merged Merged Merged Merged
Spike T Noise: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.	Retention Time 10.002 10.184 10.409 12.566 19.484 20.341 21.115 23.633 24.052 24.861 25.240	Area 501180 3.037e+6 1.827e+6 297052 2.480e+6 1.133e+6 1.205e+6 1.092e+7 2.448e+6 1.110e+7 8.831e+6 2.626e+6	None Peak to 0.743 4.504 2.710 0.440 3.678 1.681 1.786 16.191 3.630 16.460 13.095 3.894	D Peak Signal/Noise 35 48 43 20 122 45 47 298 35 145 134 42	Scan Description Merged Merged Merged Merged Merged Merged Merged Merged Merged Merged Merged Merged
Spike T Noise: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13.	Retention Time 10.002 10.184 10.409 12.566 19.484 20.341 21.115 23.633 24.052 24.861 25.240 25.394	Area 501180 3.037e+6 1.827e+6 297052 2.480e+6 1.133e+6 1.205e+6 1.092e+7 2.448e+6 1.110e+7 8.831e+6 2.626e+6 6.296e+6	None Peak to 0.743 4.504 2.710 0.440 3.678 1.681 1.786 16.191 3.630 16.460 13.095 3.894 9.336	D Peak Signal/Noise 35 48 43 20 122 45 47 298 35 145 134 42 143	Scan Description Merged Merged Merged Merged Merged Merged Merged Merged Merged Merged Merged Merged Merged
Spike T Noise: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.	Retention Time 10.002 10.184 10.409 12.566 19.484 20.341 21.115 23.633 24.052 24.861 25.240 25.394 27.513	Area 501180 3.037e+6 1.827e+6 297052 2.480e+6 1.133e+6 1.205e+6 1.092e+7 2.448e+6 1.110e+7 8.831e+6 2.626e+6 6.296e+6 1.418e+6	None Peak to 0.743 4.504 2.710 0.440 3.678 1.681 1.786 16.191 3.630 16.460 13.095 3.894 9.336 2.102	D Peak Signal/Noise 35 48 43 20 122 45 47 298 35 145 134 42 143 20	Scan Description Merged Merged Merged Merged Merged Merged Merged Merged Merged Merged Merged Merged Merged Merged
Spike T Noise: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15.	Retention Time 10.002 10.184 10.409 12.566 19.484 20.341 21.115 23.633 24.052 24.861 25.394 27.513 27.650	Area 501180 3.037e+6 1.827e+6 297052 2.480e+6 1.133e+6 1.205e+6 1.092e+7 2.448e+6 1.110e+7 8.831e+6 2.626e+6 6.296e+6 1.418e+6 971186	None Peak to 0.743 4.504 2.710 0.440 3.678 1.681 1.786 16.191 3.630 16.460 13.095 3.894 9.336 2.102 1.440	D Peak Signal/Noise 35 48 43 20 122 45 47 298 35 145 134 42 143 20 14	Scan Description Merged Merged Merged Merged Merged Merged Merged Merged Merged Merged Merged Merged Merged Merged Merged Merged
Spike T Noise: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16.	Retention Time 10.002 10.184 10.409 12.566 19.484 20.341 21.115 23.633 24.052 24.861 25.394 27.513 27.903	Area 501180 3.037e+6 1.827e+6 297052 2.480e+6 1.133e+6 1.205e+6 1.092e+7 2.448e+6 1.110e+7 8.831e+6 2.626e+6 6.296e+6 1.418e+6 971186 1.080e+6	None Peak to 0.743 4.504 2.710 0.440 3.678 1.681 1.786 16.191 3.630 16.460 13.095 3.894 9.336 2.102 1.440 1.602	D Peak Signal/Noise 35 48 43 20 122 45 47 298 35 145 134 42 143 20 14 18	Scan Description Merged Merged Merged Merged Merged Merged Merged Merged Merged Merged Merged Merged Merged Merged Merged Merged Merged
Spike T Noise: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17.	Retention Time 10.002 10.184 10.409 12.566 19.484 20.341 21.115 23.633 24.052 24.861 25.394 27.513 27.650 28.919	Area 501180 3.037e+6 1.827e+6 297052 2.480e+6 1.133e+6 1.205e+6 1.092e+7 2.448e+6 1.110e+7 8.831e+6 2.626e+6 6.296e+6 1.418e+6 971186 1.080e+6 1.314e+6	None Peak to 0.743 4.504 2.710 0.440 3.678 1.681 1.786 16.191 3.630 16.460 13.095 3.894 9.336 2.102 1.440 1.602 1.949	D Peak Signal/Noise 35 48 43 20 122 45 47 298 35 145 134 42 143 20 14 18 33	Scan Description Merged Merged Merged Merged Merged Merged Merged Merged Merged Merged Merged Merged Merged Merged Merged Merged Merged
Spike T Noise: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18.	Retention Time 10.002 10.184 10.409 12.566 19.484 20.341 21.115 23.633 24.052 24.861 25.394 27.513 27.650 27.903 28.919 29.76	Area 501180 3.037e+6 1.827e+6 297052 2.480e+6 1.133e+6 1.205e+6 1.092e+7 2.448e+6 1.110e+7 8.831e+6 2.626e+6 6.296e+6 1.418e+6 971186 1.080e+6 1.314e+6 1.112e+6 1.025e+6	None Peak to 0.743 4.504 2.710 0.440 3.678 1.681 1.786 16.191 3.630 16.460 13.095 3.894 9.336 2.102 1.440 1.602 1.949 1.650	D Peak Signal/Noise 35 48 43 20 122 45 47 298 35 145 134 42 143 20 14 18 33 27 25	Scan Description Merged Merged Merged Merged Merged Merged Merged Merged Merged Merged Merged Merged Merged Merged Merged Merged Merged Merged
Spike T Noise: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19.	Retention Time 10.002 10.184 10.409 12.566 19.484 20.341 21.115 23.633 24.052 24.861 25.394 27.513 27.650 27.903 28.919 29.976 32.472	Area 501180 3.037e+6 1.827e+6 297052 2.480e+6 1.133e+6 1.205e+6 1.092e+7 2.448e+6 1.110e+7 8.831e+6 2.626e+6 1.418e+6 971186 1.080e+6 1.314e+6 1.112e+6 1.085e+6 1.205e	None Peak to 0.743 4.504 2.710 0.440 3.678 1.681 1.786 16.191 3.630 16.460 13.095 3.894 9.336 2.102 1.440 1.602 1.949 1.650 1.609 2.054	D Peak Signal/Noise 35 48 43 20 122 45 47 298 35 145 134 42 143 20 14 18 33 27 25 21	Scan Description Merged
Spike T Noise: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21	Retention Time 10.002 10.184 10.409 12.566 19.484 20.341 21.115 23.633 24.052 24.861 25.394 27.513 27.650 27.903 28.919 29.976 32.472 36.249 38.85	Area 501180 3.037e+6 1.827e+6 297052 2.480e+6 1.133e+6 1.205e+6 1.092e+7 2.448e+6 1.110e+7 8.831e+6 2.626e+6 1.418e+6 971186 1.080e+6 1.314e+6 1.112e+6 1.085e+6 1.385e+6 2.1030+6	None Peak to 0.743 4.504 2.710 0.440 3.678 1.681 1.786 16.191 3.630 16.460 13.095 3.894 9.336 2.102 1.440 1.602 1.949 1.650 1.609 2.054 3.119	D Peak Signal/Noise 35 48 43 20 122 45 47 298 35 145 134 42 143 20 14 18 33 27 25 21 23	Scan Description Merged
Spike T Noise: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22	Retention Time 10.002 10.184 10.409 12.566 19.484 20.341 21.115 23.633 24.052 24.861 25.394 27.513 27.650 27.903 28.919 29.976 32.472 36.249 38.885 41.073	Area 501180 3.037e+6 1.827e+6 297052 2.480e+6 1.133e+6 1.205e+6 1.092e+7 2.448e+6 1.110e+7 8.831e+6 2.626e+6 1.418e+6 971186 1.080e+6 1.314e+6 1.085e+6 1.385e+6 2.103e+6 2.068e+6	None Peak to 0.743 4.504 2.710 0.440 3.678 1.681 1.786 16.191 3.630 16.460 13.095 3.894 9.336 2.102 1.440 1.602 1.949 1.650 1.609 2.054 3.119 3.067	D Peak Signal/Noise 35 48 43 20 122 45 47 298 35 145 134 42 143 20 14 18 33 27 25 21 23 23	Scan Description Merged
Spike T Noise: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23.	Retention Time 10.002 10.184 10.409 12.566 19.484 20.341 21.115 23.633 24.052 24.861 25.394 27.513 27.650 27.903 28.919 29.976 32.472 36.249 38.885 41.073 43.071	Area 501180 3.037e+6 1.827e+6 297052 2.480e+6 1.133e+6 1.205e+6 1.092e+7 2.448e+6 1.110e+7 8.831e+6 2.626e+6 1.418e+6 971186 1.080e+6 1.314e+6 1.112e+6 1.085e+6 1.385e+6 2.068e+6 2.008e+6 2.200e+6	None Peak to 0.743 4.504 2.710 0.440 3.678 1.681 1.786 16.191 3.630 16.460 13.095 3.894 9.336 2.102 1.440 1.602 1.949 1.650 1.609 2.054 3.119 3.067 3.262	D Peak Signal/Noise 35 48 43 20 122 45 47 298 35 145 134 42 143 20 14 18 33 27 25 21 23 23 18	Scan Description Merged

Cont....

Figure 1 Showing *C. reflexa* leaf methanolic extractsresult observed for GC-MS analysis

BEPLS Special Issue [1] 2022

Figure 3 Showing T. cordifolia fruit methanolic extractsresults observed for GC-MS analysis

MOLECULAR DOCKING AND SIMULATION STUDIES

Molecular docking studies can be used as a novel inhibitor for treating wastewater treatment. The 3D structure of the CusBA heavy-metal efflux complex and the Phthalic acid is as shown in Figure 4. The docking results for the compounds show strong hydrogen bond associations at the 260 Arg and the 195 Arg positions scoring for 1.88 and 1.91 docking scoresas shown in Figure 5 for its 3D representation and in Figure 6 for its 2D representation. Similarly, Table 2 depicts the interaction results of GC-MS retrieved compounds with heavy metal giving the data on G Score, Dock score and H bond details. The residue details are also given in Table 3, briefly describing the bond length and other major details.

Ligand	G Score	Dock Score	H Bond
Phthalic Acid	-4.2	-4.2	-2.82
Ethyl Oleate	-4.44	-4.44	0
Eicasanoic Acid	-3.94	-3.94	-1.32
9-Octadecenoic Acid	-3.64	-3.64	-2.35
Hexadecanoic Acid,butyl	-3.26	-3.26	0
ester			
Eicosaoic Acid	-2.92	-2.92	-0.35
Octadecanoic Acid,butyl ester	-2.75	-2.75	-0.24
Heptadecanoic Acid	-2.59	-2.58	-2.2
Methyl 10-	-2.54	-2.54	-0.51
oxohexadecanoate			

 Table 2 Interaction results of the selected compounds

Table 3 Interaction result of top binding affinity of Phthalic acid with Heavy Metal

Tuble b interfuetion rebuilt of top binding uninity on intilatio dota with nearly intera-				
Protein Name	Ligand Name	InteractingResidue	Bond Length	
CusBA heavy-metal efflux	Phthalic Acid	ARG 195, ARG	1.91,1.88	
Complex		260		

Figure 4 Structure of CusBA heavy-metal efflux complexStructure of Phthalic Acid from *Escherichia* coli

Figure 5 3D The Docking Structure of CusBA heavy-metal efflux complex from *Escherichia coli* with Phthalic acid. Maroon colour represents ligand (Phthalic acid) molecule and the pink colour dotted line represents hydrogen bond interactionbetween protein and ligand

Figure 6 2D Docking Structure of CusBA heavy-metalefflux complex from *E. coli* **with Phthalic acid** The compound identified in the GC-MS also and it strongly suggests that when the bioactive compounds can be used as naturally remove the pollutant from wastewater and it also for the treatment of wastewater organic wastes.

CONCLUSION

The GC-MS analysis of methanolic extracts of *C. reflexa* leaves, *F. vulgare* stem and *T. cordifolia* fruits shows the presence of various bioactive components and the molecular docking study was designed order to find the binding efficiency of the derived phytochemical compound from the GC-MS results obtained with the CusBA heavy-metal efflux complex from *Escherichia coli*. The molecular docking results show that the phthalic acid from the phytochemical derived from the three different plant extracts have been showing better binding activity with the heavy metal complex, which indirectly depicts that the plant extracts have an efficient ability to deteriorate or remove heavy metal toxicants from the solvent effluents and also the phytochemical compound is satisfying Lipinski's rule of 5 and ADMET properties, to be an inhibitor.

REFERENCES

- 1. Kamble SM. (2014). Water pollution and public health issues in Kolhapur city in Maharashtra. *International Journal of Scientific and Research Publications*. 4(1): 1-6.
- 1. Jeyaraj M, Ramakrishnan K, Jai A, Arunachalam S, Magudeswaran P. (2016). Investigation of physico-chemical and biological characteristics of various lake water in coimbatore district, Tamilnadu, India. *Orient. J. Chem.* 32(4): 2087-2094.
- 2. Massoud MA, El-Fadel M, Scrimshaw MD, Lester, JN. (2006). Factors influencing development of management strategies for the Abou Ali River in Lebanon I: spatial variation andland use. *Sci. Total Environ.* 362: 15-30.
- 3. Sastry MAA, Khan MI, Kumar R. (2003). Microbial nanoparticle production in Nanobiotechnology. *Nanobiotechnology*. 85(2): 163-169.
- 4. Nelson DPD, Oswaldo LA, Gabriel IHDS, Elisa E. (2005). Mechanical aspects of biosynthesis of silver nanoparticles by several *Fusarium oxysporum* strains. *Journal of Nanobiotechnology.* 3: 8.
- 5. Hemanth NKS, Karthik L, Bhaskara RKV. (2010). Extracellular biosynthesis of silver nanoparticles using the filamentous fungus *Penicillium* sp. *Arch Appl Sci Res.* 2(6): 161-167.
- 6. Natarajan K, Ramchandra SS. (2010). Microbial production of silver nanoparticles. *Dig J Nanomat Bios.* 5(1): 135-140.
- 7. Ankamwar BDC, Ahmad A, Sastry M. (2005). Biosynthesis of gold and silver nanoparticles using *Emblics* officinalis fruit extract and their phase transfer and transmetallation in an organic solution. J Nanosci Nanotechnol. 5(10): 1665-1671.

- 8. Deventhiran M, Wyson WJ, Mohamed MSN, Jaikumar K, Saravanan P, Anand D. (2017). Comparative phytochemical analysis of wild and micropropagated *Cleome viscosa* L. *Journal of Applied Pharmaceutical Science*. 7(4): 083-088.
- 9. Muruganandam AV, Bhattacharya SK, Ghosal S. (2000). Indole and flavanoid constituents of *Wrightia tinctoria*, *W. tomentosa* and *W. coccinea*. *Indian Journal of Chemistry*. 33B: 125-131.
- 10. Satyanarayana KG, Arizaga GG, Wypych F. (2009). Biodegradable composites based onlignocellulosic fibers-An overview. *Progress in Polymer Science.* 34(9): 982-1021.
- 11. Aboul-Fadl T, Bin-Jubair FA, Aboul-Wafa O. (2010). Schiff bases of indoline-2, 3- dione (isatin) derivatives and nalidixic acid carbohydrazide, synthesis, antitubercular activity and pharmacophoric model building. *European Journal of Medicinal Chemistry*. 45(10): 4578-4586.
- 12. Rangaswami S, Rao MN. (1963). Crystalline chemical components of the bark of *Wrightia tinctoria*, Br. In *Proceedings of the Indian Academy of Sciences-Section A*. 57(2): 115-120.
- 13. Pritam JS, Sanjay BB. (2011). Preliminary phytochemical screening of woody stem extracts of *Abelmsochus manihot* and *Wrightia tinctoria*. *Int. J. Pharmaceutica Sciencia*. 1: 59- 6.
- 14. Selvaraj, Prasanna, DV. (2016). Pt and Pt-Sn nanoparticles decorated conductive polymer- biowaste ash composite for direct methanol fuel cell. *Korean J. Chem. Eng.* 33(4): 1489.

CITATION OF THIS ARTICLE

A. Devadoss, P. Dharmalingam and S. Chandraleka. Phytocompound identification from *Cuscuta reflexa*, *Foeniculum vulgare* and *Tinospora cordifolia* using gas chromatography-mass spectrometry and their efficiency on removal of metal toxicity by an *In Silico* approach . Bull. Env.Pharmacol. Life Sci., Spl Issue [1] 2022 : 1050-1059