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ABSTRACT 

Over the last decade, aggregating evidence has been suggested that there is a causative link between mitochondrial 
dysfunction and aging in the individuals. Several studies on animal models of ageing and neurodegenerative diseases 
have provided compelling evidence that mitochondria are in the development and progression of diseases such as AD. 
Further, a role for mitochondrial dysfunction associated with ageing is supported by studies, which have revealed that 
amyloid-β enters mitochondria and disrupts the electron transport chain (ETC) which generates reactive oxygen species 
(ROS) and inhibits the cellular ATP production which in turn results into the progression of neurodegenerative diseases 
like AD. In addition, “free radical mitochondrial theory” associated with oxidative stress has been reported as a key 
common pathway for cellular dysfunction and death and a possible therapeutic target during a broad spectrum of 
human medical conditions including cancer, diabetes, various neurodegenerative disorders. Furthermore, recent 
evidence suggests that chain reaction of lipidperoxidation due to oxidative stress leads to cell injury and DNA damage. 
Melatonin have ability to protect against damaging oxygen reactants under various extreme oxidative stress conditions 
and also, various studies have revealed that melatonin has been very effective in the prevention ofamyloid-β peptide(Aβ) 
induced toxic effects on neuronal cells in AD patients. Here we discuss the different theories associated with the 
mitochondrial dysfunction which leads to the different relevant diseases that underlie the central role of mitochondria in 
the aging process and role of the melatonin in diseases associated with mitochondrial dysfunction. 
Keywords: Aging, Mitochondrial dysfunctions, ROS production, free radical mitochondrial theory, Lipid peroxidation, 
Melatonin. 
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INTRODUCTION 
Aging is belief to be a degenerative process which is caused by accumulated damage that leads to cellular 
dysfunction, tissue failure, and death. Several theories related aging have been proposed[1–5], but the 
mitochondrial free radical theory of aging (MFRTA) has been center stage for decades[2]. As per this 
theory, ROS are considered to be unwanted toxic by-products of aerobic metabolism which induce 
oxidative damage to various cellular macromolecules because of their high chemical reactivity. The main 
production site of superoxide, an abundant ROS in the cell formed at the level of complexes I and III 
during electron transport is the respiratory chain (RC) which is located in the inner mitochondrial 
membrane (Figure 1). The superoxide anion is converted to hydrogen peroxide with the help of 
Superoxide dismutase (SOD). Even though hydrogen peroxide itself is not a free radical, in the presence of 
transition metals it can be converted to the highly reactive hydroxyl radical through the Fenton reaction 
(Figure 1). The hydroxyl radical is highly reactive and causes oxidative damage to virtually every 
molecule type in the cell, including lipid, proteins and nucleic acid, therefore it is considered to be the 
most damaging form of ROS. The MFRTA theory is basically depends upon several observations: (a) 
mitochondrial ROS production increases with age, (b) activity of several ROS-scavenging enzymes 
decreases with the age, (c) mutations of mitochondrial DNA (mtDNA) accumulate during aging, and (d) a 
vicious cycle occurs due to somatic mtDNA mutations impair RC function, which in turn result in a further 
increase in ROS production and accumulates oxidative damage to proteins, lipids, and DNA[6–8]. 
According to this theory, mitochondria plays a very crucial role in mediating and amplifying the oxidative 
stress that drives the aging process. 
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Figure 1. Schematic model of the oxidative phosphorylation system and the production of ROS. 
H+- Proton,  Cyt c- Cytochrome C, NADH- Nicotinamide Adenine Dinucleotide Hydrogen,                       
NAD- Nicotinamide Adenine Dinucleotide, H2O- Water, O2- Oxygen, O2—Superoxide, ONOO-- 
Peroxynitrite anion, H2O2- Hydrogen Peroxide, OH- -Hydroxyl radical, FADH2- Flavin adenine 
dinucleotide, ROS- Reactive Oxygen Species 

 
MITOCHONDRIA AND AGING 
Mitochondria modulate a multitude of various metabolic and signalling pathways and also plays a key 
role in programmed cell death. The mitochondrial oxidative phosphorylation is the primary source of 
high-energy compounds in the cell. The most important function of mitochondria is to produce ATP 
through the process of oxidative phosphorylation, which is conducted by the four RC complexes 
(complexes I–IV)and the ATP synthase (complex V), all are present in the inner mitochondrial membrane. 
As mitochondria contain their own genetic information, a double-stranded circular molecule of 16.5 kb 
encoding 13 proteins, 22 transfer RNAs (tRNAs), and 2 ribosomal RNAs in mammals, therefore they are 
very unique among the cellular organelles. The 13 mtDNA encoded proteins are all components of the RC 
and oxidative phosphorylation collapses in the absence of mtDNA expression [9]. Mitochondrial function 
has long been accepted that it gets declined during aging concomitant with the result alteration in 
mitochondrial morphological, for example, abnormally rounded mitochondria in aged mammals [10]. 
Mitochondrial energy metabolism dysfunction leads to decreased ATP production, impaired calcium 
buffering and generation of ROS is increasingly recognized as playing a key role in both aging and 
neurodegenerative diseases. Mitochondria are likely to be the major source of ROS in eukaryotes, as it has 
potential for univalent transfer of electrons from the electron transport chain to oxygen.  Formation of 
reactive oxidants, including ROS, appears to be increased in damaged mitochondria, and in cell with 
compromised mitochondrial function. Number of mitochondria reduces with the age in liver cells of mice 
[11], rats [12], and humans [13,14], concurrent with a decrease in mtDNA copy number and 
mitochondrial protein levels [15]. Furthermore, in comparison with juvenile animals (3-4 months), RC 
capacity is decreased up to 40% in rat liver mitochondria of old animals (24 months) [16]. The decrease 
in the RC capacity has also been reported with age in human liver, heart, and skeletal muscle[17,18] . The 
some of these changes may be secondary, as RC function is inducible [19]. It is reported that, the activity 
of specific RC complexes and certain nuclear-encoded mitochondrial proteins also declines with 
mammal’s age [20–24]. The activity of complexes I and IV declined with age in liver, brain, heart, and 
kidney of mice and rats [22–24], whereas, more interestingly, the activity of complexes II, III, and V 
remains mostly constant [25]. The reasons for these partially contradictory differences in age-related 
decline in RC function are unknown, reduced expression of mtDNA as well as elevated levels of mtDNA 
mutations have been suggested as potential causes [24]. Moreover, it is important to note that the cell 
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type composition likely changes in aging organs and hence a difference in function of mitochondria in 
tissue homogenates from young and old individuals may be hard to interpret. Further factors, such as 
differences in the applied methodology [26] and difficulties in finding suitable controls to aged patient 
cohorts [19], leads to complicate this type of comparison. While aging is related with the decline in 
mitochondrial function, this observation alone does not imply causality because age-associated changes 
in mitochondrial function might be secondary mechanism to other mechanisms [27]. Recent genetic 
models suggest that mtDNA mutations induces aging phenotypes and create RC dysfunction. 
Furthermore, it is important to consider that mitochondrial biogenesis is controlled simultaneously at 
many different levels, when considering the role of mitochondrial dysfunction in aging[28–32]. As it is 
also reported that hormones such as thyroid and estrogens are not only plays an important role in cell 
growth and differentiation, but also very important regulators of mitochondrial biogenesis. Therefore, 
clearly shown that, physical activity and caloric restriction both can reduce oxidative damage and can 
improve mitochondrial function[33]. 
 
MITOCHONDRIAL DYSFUNCTIONS 
Amyloid-β peptide induced ROS production: Neurodegenerative diseases 
Mitochondria are the main source of ROS 
Mitochondria are the cytoplasmic organelles important for life and death. Mitochondria plays a role in 
several cellular functions, including production of major part of cellular ATP, regulation of intracellular 
calcium, the release of proteins that activate the caspase family of proteases and free radical production 
and scavenging. The mitochondria contain the respiratory chain or electron transport chain (ETC) which 
is located in the inner mitochondrial membrane and consists of five complexes (complexes I–V), the fifth 
complex is directly involved in ATP synthesis. These complexes of the mitochondrial respiratory chain are 
basically made up of multiple subunits, and all contain proteins encoded by nuclear DNA and mtDNA, 
except for complex II, which is entirely encoded by nuclear DNA [34–37]. The mitochondria, also called as 
the powerhouses, are the chief energy-producing organelles in the most cells, which provide most energy 
for our normal life. Basically, energy in the form of ATP is efficiently produced via oxidative 
phosphorylation(OXPHOS) in the mitochondrial RC. In several reports firmly reported that mitochondria 
are believed to be the major intracellular source of ROS. Several years of research revealed that free 
radicals are produced at multiple sites in the mitochondria: Complexes I and III produces superoxide 
radicals via electron leaks, these radicals are dismutated by manganese superoxide dismutase, and 
further generating H2O2 and oxygen. By either glutathione peroxidase or catalase H2O2 is converted into 
H2O [38]. Conditionally, Complex II also produces ROS [37]. Components of tricarboxylic acid, including α- 
ketodehydrogenase and pyruvate dehydrogenase produces superoxide radicals in the matrix. In addition 
to this, via monoamine oxidase mitochondrial outer membrane also produces free radicals, by catalysing 
the oxidative deamination of primary aromatic amines. This deamination is a quantitatively large source 
of H2O2. A little quantity of ROS may not be toxic to cells, and may have some benefit roles to cells and 
homoeostasis. Recent reports strongly suggest that ROS, and specifically mitochondria generated ROS, are 
involved in physiological signalling cascades regulating various cellular and organ functions [39,40]. 
However, excessive and/or sustained increase in ROS, may lead to oxidative stress, as primary factors in 
numerous pathologies, including aging and neurodegenerative diseases, are widely recognized [40–42]. It 
shown that Aβ cascade hypothesis remains the major cellular event in AD or evidence also indicates a 
mitochondrial cascade hypothesis, mitochondrial dysfunction which may initiate the disease [43]. This 
hypothesis, is supported by recent observations showing that early impairments of mitochondrial 
dysfunction and oxidative stress may precede Aβ overproduction and deposition [43–47]. 
Mitochondrial localization of Aβ 
As per the above, Aβ deposit is the main hallmark of AD, and Aβ42 is the most toxic peptide and the 
predominant species in the parenchymal amyloid deposits in AD brain, and it is an initially deposited 
species [48–51]. Even though the basic view is that Aβ is deposited extracellularly, both cellular and 
biochemical studies carried out in different models of AD and aging have provided evidence that this 
peptide also can accumulate inside neurons, target mitochondria, and contribute to further disease 
progression [52–58]. With the use of in vivo and in vitro approaches, Hansson Peterson et al. 
demonstrated that Aβ is transported into rat mitochondria via the translocase of the outer membrane 
(TOM) and localizes within the mitochondrial cristae [59]. It has been shown that Aβ42 can promote 
mitochondrial mislocalization, which contributes to Aβ42-induced neuronal dysfunction in a transgenic 
Drosophila model. In Aβ42 fly brain, mitochondria were decreased in axons and dendrites, and gets 
accumulated within the somata without severe mitochondrial damage or neurodegeneration. By genetic 
reductions in mitochondrial transport, and modulation in cAMP levels and protein kinase A(PKA) activity, 
the Aβ42-induced behavioural defects were exacerbated. The perturbations in mitochondrial transport in 
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neurons were sufficient to disrupt PKA signalling and suggesting a mechanism whereby mitochondrial 
mislocalization contributes to Aβ42-induced neuronal dysfunction, which ends up demonstrate that 
mislocalization of mitochondria underlies the pathogenic effects of Aβ42 in vivo [60]. 
Aβ induces ROS production 
The oxidative stress and its sequelae are likely associated to both apoptotic and necrotic mechanisms of 
neurotoxicity and there is an evidence suggesting that tissues from both AD patients and individuals with 
mild cognitive impairment have elevated levels of oxidative DNA damage [61]. Further, post-mortem 
tissue provides strong evidence for significant increased levels of cellular oxidative stress in vulnerable 
regions (cortex and hippocampus) of AD brains compared to aged controls[62,63]. Most significantly, Aβ 
peptides directly initiate free radical formation, cellular dysfunction, and subsequent neuronal death [64–
67]. The mitochondria are thought to be the central target for oxidative stress induced damage [68]. 
Recent primary culture study has shown that oligomeric Aβ42 could induce reactive ROS production from 
cortical neurons through activation of NADPH oxidase [69]. Notably there is a defect in the antioxidant 
defence system, which may lead to oxidative damage in patients with AD and it has been found that 
erythrocyte antioxidant enzyme activities were significantly lower in patients with AD compared with 
controls. These results strongly suggest that alterations in these enzymes may play a role in the 
etiopathogenesis of AD and hence, Aβ-associated oxidative stress and related antioxidant defence system 
may be of fundamental importance in AD etiology and pathogenesis [70]. 
Mitochondrial DNA changes in AD 
The Aβ cascade hypothesis remains the important pathogenic model, as suggested by familiar AD, mainly 
related to mutation in amyloid precursor protein(APP) and presenilin genes. Remaining more than 98% 
of AD patients are mostly sporadic late-onset cases, with a complex etiology because of interactions 
between environmental conditions and genetic features of the individuals. An energy failure, increased 
oxidative stress and accumulation of Aβ, observed by the somatic mutations in mtDNA. Although, no clear 
causative mutations in the mtDNA have been linked to AD, even some variations have functional 
consequences, including changes in enzymatic activity [71]. Infact, results of studies on the role of mtDNA 
polymorphisms or haplogroups in AD are controversial [70–72][68,69]. Recently, to investigate the 
possible association between mtDNA inherited sequence variations, a high-resolution analysis in 936 AD 
patients and 776 cognitively assessed normal controls from central and northern Italy was performed. A 
sub- haplogroup H5 is a risk factor for AD in particular for females and independently from the 
apolipoprotein E(APOE) genotype. The multivariate logistic regression shown an interaction between H5 
and age [73].  
Mitochondrial dysfunction in AD 
It has been clear that impairment occurs to all five of the mitochondrial OXPHOS complexes in the AD 
brain. The mitochondrial dysfunction accomplished with metabolic dyshomeostasis and reduced ATP 
synthesis, occurs early in AD. Besides that, mitochondrial dysfunction is proposed to link between 
amyloid deposition and neuronal synaptic loss. Thus, the existence of mitochondrial dysfunction is very 
important in AD[65–74]. The age-dependent accumulation of mutations in mtDNA and resulting rise in 
oxidative stress and impairment in mitochondrial respiratory chain, especially complex IV, gained 
attention as potential factors that could participate in the onset of sporadic AD. Indeed, the decreased 
activity of the cytochrome c oxidase (COX, complex IV of respiratory chain) has been reported in different 
brain regions of AD patients [75]. The COX activity was also reduced in AD transgenic (Tg2576) mice, as 
mutant APP/Aβ impair mitochondrial metabolism in AD. And a decrease in COX activity and an increase 
in hydrogen peroxide were found in young Tg2576 mice, leads to the appearance of Aβ plaques. And also, 
in vitro study using primary neuron culture and confocal microscopy demonstrates that Aβ impairs the 
mitochondrial movement, these findings indicate that mitochondria are the targets of Aβ, and 
mitochondrial dysfunction happens at early stage of the disease, suggesting that early mitochondria-
targeted therapeutic interventions may be effective in delaying AD progression in treating AD 
patients[76]. The inhibitory potential mechanism of the Aβ42 on activity of electron transport chain 
enzyme complexes was investigated, in human mitochondria. Furthermore, photoinduced cross-linking of 
unmodified proteins revealed dimeric Aβ as the only Aβ species to provide significant temporal 
correlation with the observed COX inhibition. An analysis of brain and liver from an AD model mouse 
(Tg2576) revealed abundant Aβ immunoreactivity within the brain mitochondria fraction [55]. These 
data have been clearly shown that endogenous Aβ is related with brain mitochondria and that Aβ1–42, 
possibly in its dimeric conformation, is a potent inhibitor of COX, but only when in the presence of Cu2+. 
Therefore, in the neurodegeneration process of AD, Cu2+-dependent Aβ-mediated inhibition of COX may 
be an important contributor [55]. Copper may participate in the pathophysiology of AD, interestingly 
copper can bind to APP and Aβ, then affects their structure, and the formation of beta-sheet structure that 
is widely accepted as toxic secondary structure of Aβ [77]. The age-dependent decline in the 
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mitochondrial respiratory function, especially COX activity, may participate in the formation and 
accumulation of Aβ. These knockout (KO) mice showed an age-dependent COX deficiency within the 
cerebral mantle and hippocampus then AD-like double transgenic mice expressing mutants of APP and 
Photosystem 1 (PS1) during a neuron-specific COX-deficient background were generated. More 
surprisingly, compared with the COX-competent transgenic mice, COX10 KO mice exhibited fewer 
amyloid plaques in their brains. This decrease in amyloid plaques in the KO mouse was accompanied by a 
reduction in Aβ42 level, β-Secretase 1(BACE1) activity, and oxidative damage. Likely, production of ROS 
from cells with partial COX activity was not elevated [78–80]. Accordingly, these results suggest that, 
contrary to previous models, a defect in neuronal COX does not increase oxidative damage nor predispose 
for the formation of amyloidogenic APP fragments. On the other side, this study also shown that genetic 
modification of mitochondria can inhibit ROS overproduction, eventually reduce Aβ level, prevents the 
development and progress of AD, suggesting a useful target for treatment of the disease. 
The free radical mitochondrial theory 
Free radicals and oxidative stress 
The free radicals are atoms or molecules that contain unpaired electrons in their outer orbitals, their 
electronic configurations render these chemical species highly reactive with membrane lipids, proteins, 
nucleic acids, and other cellular substrates. The examples of common, endogenously-produced reactive 
oxygen species (ROS) are superoxide anion (O2−), hydrogen peroxide (H2O2), singlet oxygen, 
hypochlorous acid (HOCl), peroxynitrite (ONOO−), and the hydroxyl radical (OH•). Transition metals, for 
example ferrous iron (Fe2+) or cuprous copper (Cu1+), plays an important role in cellular redox chemistry 
by reducing H2O2 to the highly-cytotoxic OH• radical via Fenton catalysis. Additionally, transition metals 
can also behave as non-enzymatic peroxidases that bio-activate benign catechol-containing compounds 
(like dopamine) into toxic ortho-semiquinone radicals. In mammalian tissues, evolutionarily-conserved 
antioxidant enzymes e.g. the superoxide dismutase, catalase, the glutathione peroxidases, and various 
reductases operate in concert with a host of non-enzymatic, low-molecular-weight antioxidant 
compounds such as glutathione (GSH) and thioredoxin to maintain redox homeostasis. Furthermore, by 
maintaining transition metals during a relatively low redox state, metal-binding proteins, like ferritin, 
transferrin, lactoferrin, the metallothioneins, and ceruloplasmin, contribute substantially to the 
antioxidant protection of tissues and body fluids. Oxidative stress has been defined as, a disturbance 
within the pro-oxidant/antioxidant balance in favour of the previous, resulting in possible damage [81]. It 
has been reported that oxidative stress as a key common pathway for cellular dysfunction and death and 
a possible therapeutic target during a broad spectrum of human medical conditions including cancer, 
diabetes, obstructive lung disease, inflammatory bowel disease, cardiac ischemia, glomerulonephritis, 
macular degeneration, and various neurodegenerative disorders[82]. 
The free radical-mitochondrial theory of ageing 
Out of the various theories of ageing promulgated over the last several decades, the “free radical-
mitochondrial” theory remains among the foremost successful. Within the mid-1950s, Denham Harman, 
was the primary to posit that “free radical reactions are involved within the ageing changes related to the 
environment, disease, and intrinsic ageing processes” [83]. The “free radical” theory of ageing was further 
defined upon recognition of the role played by mitochondria as both a leading source of ROS generation 
and main target of oxidative molecular damage in ageing tissues. The “free radical-mitochondrial” theory 
states that oxidative injury to mitochondria, triggered by intrinsic metabolic processes and 
environmental insults, results in a cascade of events characterized by infidelity of electron transport and 
a self-sustaining spiral of augmented radical generation within the inner mitochondrial membrane. 
Further, in turn, engenders bioenergetic failure and progressive tissue ageing [84,85]. The common 
clinical impression that patients with chronic systemic illness or drug abuse often appear “older than 
stated age” may be a reflection of this concept at the organismal level. In conversely, normal ageing 
tissues compromised by an increasingly unfavourable mosaic of healthy and ROS-spewing mitochondria 
(heteroplasmy) may become particularly susceptible to ageing-associated conditions such as 
atherosclerosis, neurodegeneration, and cancer [86–88]. The following observations have been 
considered particularly germane to the free radical-mitochondrial theory of ageing: (1) In many tissues, 
ROS production, oxidative substrate damage, and mitochondrial insufficiency increase as a function of 
advancing age. (2) With some notable exceptions, the longevity of many vertebrate and invertebrate 
species correlates inversely with O2 consumption and basal metabolic rate and directly with natural or 
artificially-bolstered antioxidant defences [89]. (3) Caloric restriction and attenuation of mitochondrial 
respiration diminish age-related oxidative damage and, in some cases, significantly extend longevity [89]. 
(4) Mitochondrial DNA is specifically vulnerable to oxidative damage, exhibiting an almost 10–100-fold 
greater mutation rate than nuclear DNA. Mutated mtDNA may code for abnormal cytochromes of the 
electron transport chain (ETC) that promote infidelity of electron transport, ROS (superoxide, hydrogen 

Tiwari et al 



BEPLS Vol  10 [2] January 2021             161 | P a g e            ©2021 AELS, INDIA 

peroxide) generation within the inner mitochondrial membrane, and a vicious cycle of further mtDNA 
damage. (5) Mutations linked to shortened longevity in C. elegans are associated with increased ROS 
production.  
Oxidative stress, iron deposition, and mitochondrial insufficiency in human central nervous system (CNS) 
Disorders 
An oxidative damage, iron deposition and mitochondrial insufficiency are amply documented within the 
normal mammalian CNS as a function of advancing age using an array of biochemical, histopathological 
and imaging techniques. However, there appears to be selective regional vulnerability within the ageing 
CNS to this pathological triad and reasonable co-localization of these changes within affected areas [90–
93]. In the ageing human brain, markers of free radical injury, excessive iron accumulation, and mtDNA 
deletions are more robust in the basal ganglia, hippocampus and certain cerebellar nuclei than in the 
cerebral cortices and other brain regions [94]. The mechanisms governing the heterogeneity of these 
pathological features in the normal ageing CNS and in various ageing-related neurodegenerations (below) 
remain inadequately understood. 
 Products of lipid peroxidation as common markers of cancer 
The oxidative stress leads to cell injury by three basic ways: (a) lipid peroxidation of membranes, (b) 
oxidative modification of proteins and (c) DNA damage. Lipid peroxidation primarily affects cell 
membranes and other lipid containing structures [95]. The β-oxidation of lipids is usually followed by a 
release of oxygen, which is reduced to water through the mitochondrial respiratory chain. Further, lipids 
can be oxidized with efficient ROS initiators, particularly hydroxyl radical and perhydroxyl radical(HO2•), 
forming water and a lipid radical. This initiates the reaction of lipid peroxidation, which takes place in the 
cells. The lipid radical reacts directly with molecular oxygen and generates a lipid peroxyl radical and this 
lipid peroxyl radical is not a very stable molecule and can combine with another adjacent carboxylic fatty 
acid to make alipid hydroperoxide and different lipid radicals, or it can react with itself. The Lipid 
hydroperoxide are often also weakened into a lipid alhoxyl radical and a hydroxyl. Lipid radicals formed 
at the previous stage can reactwith oxygen to supply another lipid peroxyl radical, andso on, this process 
is named “chain reaction of lipidperoxidation” (Figure 2). The most intermediate productsof the reaction 
are lipid hydroperoxides (LOOHs). Recently, it was reported that the by-products of lipid peroxidation 
can induce carcinogenesis. The cell membranes contain a high concentration of polyunsaturated fatty 
acids, which are frequently subjected to peroxidation and this leads to an inhibition of growth and death 
of cells [96]. The oxidation of phospholipids in the inner mitochondrial membrane (IMM) can initiate the 
mitochondria-mediated pathway of apoptosis. The lipid peroxidation by-products firstly react to 
cardiolipin molecules, the IMM phospholipids, which are bound to cytochrome c [97–99]. This stimulates 
disturbances of cytochrome-cardiolipin interaction and dissociation of cytochrome c from the IMM [100–
102]. The release of cytochrome c into the cytoplasm induces a series of biochemical reactions, results 
into a caspase activation and subsequent cell death. At the same point, a major regulator of 
mitochondrion-dependent apoptosis is B-cell lymphoma 2 (Bcl-2) family of proteins, which show both 
pro- and anti-apoptotic activities. The proteins belonging to the Bcl-2 family are sure to the outer 
mitochondrial membrane (OMM) and may modulate its permeabilization [103]. The Bax and Bak are anti-
apoptotic proteins of the Bcl-2 family, which can be activated in two ways: through disturbance of their 
bond with antiapoptotic proteins, or interaction with activator proteins, which stimulate their 
conformational changes. The inactivated Bax proteins can be localized as monomers in the cytosol or 
closely associated with the OMM. Further, during the process of its activation, Bax forms homo-oligomers 
and inserts itself into the OMM as well as into Bak. This results into membrane pore formation and 
permeabilization, which initiates the release of cytochrome c in cytosol. An anti-apoptotic protein 
prevents mitochondria-mediated apoptosis through their interaction with pro-apoptotic ones [104]. The 
reported studies show that overexpression of Bcl-2 inhibits the release of cytochrome c from 
mitochondria and the subsequent apoptotic response is blocked[105]. For instance, 4-
hydroxynonenal(HNE)-induced caspase activation is suppressed in Bcl-2 transfected colorectal 
carcinoma cells, induces an apoptosome assembly in the presence of ATP/dATP. This stimulates pro-
caspase-9 directly within the apoptosome complex. Furthermore, the pro-caspase-9 is cleaved to the 
active caspase-9, which, in turn, activates the caspases-3, -6 and -7, leading to DNA fragmentation and cell 
death[105–108]. The caspase activation is blocked and the cell death is re-directed from apoptosis to 
necrosis, if the cellular ATP/dATP level is depleted. The apoptosome formation and release of cytochrome 
c can be also triggered though the extrinsic pathway of apoptosis. In addition, the accumulation of 
damage directly in mitochondria may also cause enhanced oxidant production and a cascade of 
degenerative events (Figure. 3). It should be considered that HNE might be generated directly through the 
oxidation of mitochondrial phospholipid cardiolipin [109]. During this case, HNE reacts with surrounding 
molecules near the location of its formation, thereby derived apoptosis again by promoting chain-
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reactions of the mitochondria. This process seems to be involved in cancer and atherosclerosis. Thus, it 
has been reported that HNE could induce mitochondria-mediated apoptosis within the 
pheochromocytoma (PC12) cell line and colorectal carcinoma cells [110–113].  
 

 
Figure 2. Scheme of lipid peroxidation chain reaction [96]. LH- Lipid, H2O2- Hydrogen Peroxide, OH-- 
Hydroxyl Radical, O2- Oxygen, LOOH- Lipid Hydroperoxide LO• - Lipid Alkoxyl Radical, LOO•- Lipid 
Peroxyl Radical, MDA- Methylenedioxyamphetamine, HNE-  4-Hydroxynonenal, L-L- Fatty Acid 
Dimer, L• - Lipid Radical 

 

 
Figure 3. Schematic diagram illustrating the harmful effects of ROS on the cellular processes and 
subsequent results. ROS- Reactive Oxygen Species, DNA- Deoxyribose Nucleic Acid, RNA- Ribose 
Nucleic Acid 

MELATONIN: THERAPEUTIC AGENT FOR MITOCHONDRIAL DYSFUNCTION 
Melatonin is having amphiphilic nature and it can cross physiological barriers, thereby reducing oxidative 
damage in both the lipid and aqueous environments of cells [114]. Melatonin seems to work via a number 
of means to reduce oxidative stress, and both direct and indirect antioxidant properties of melatonin have 
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been reported[115,116]. It exhibits indirect antioxidant property by supporting superoxide dimutase 
(SOD), glutathione peroxidase (GPx), glutathione reductase (GR)activities [117–119]. Melatonin also 
stimulates glutathione production in the cells, by increasing the activity of glutamylcysteine synthase 
[120]. By promoting the conversion of oxidized glutathione (GSSG) back to its reduced form (GSH) [117], 
melatonin increases the glutathione reductase activity. Exogenous administration of melatonin given in 
pharmacological doses is capable of stimulating GPx activity in rat brain [121] and in several chicken 
tissues [122], showing that it promotes the indirect antioxidant mechanism. The studies also have been 
shown that melatonin may act at the genomic levels, as melatonin is present in the nuclei of neural cells 
and melatonin binding sites have also been found in nuclei of these cells [123–125]. Direct free radical 
scavenging properties of melatonin towards lipid peroxidation and DNA degradation have been shown 
both in vitro and in vivo [126–129]. This action of melatonin could be because of direct scavenging of free 
radicals and the activation of DNA repairing enzymes [130]. Melatonin can also directly act on free 
radicals without binding to a receptor [131]. By in vivo finding observations found that melatonin was 
reported to reduce the molecular damage associated with massive free radical generation [132]. 
Melatonin have also proven important in the ability of the melatonin to protect against damaging oxygen 
and nitrogen-based reactants under various extreme oxidative stress conditions [133–136]. Ebelt and his 
group have shown that melatonin can directly quench the free radicals like hydroxyl radicals (OH•) 
through electron spin resonance (ESR) studies [131,137]. In these studies, a spin trapping agent (5-
diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide; DEPMPO) which is more sensitive than the one used 
in earlier studies, and it was found that melatonin directly quenches the emergence of the OH-DEPMPO 
adduct in a dose dependent manner. On other hand, Ebelt and his co-workers have found that melatonin 
can also prevent OH• mediated lipid peroxidation which supports the argument that melatonin can 
scavenge free radicals in both aqueous and lipid environments [138–140]. Under both in vitro and in vivo 
conditions, these observations are consistently reported with many earlier reports where in the ability of 
melatonin to prevent lipid oxidation were reported. Furthermore, other highly reliable methodologies 
have been utilized to insure the OH• scavenging activity of melatonin. Not only this, melatonin has also 
been shown to neutralize other reactive oxygen and nitrogen-based species in both plants and animals 
[141–150]. Several methods such as pulse radiolysis, salicylate trapping, reduced oxidative damage, 
chemiluminescence and functional theory computational tools have been used to estimate the scavenging 
actions of melatonin. In these studies, melatonin was found to scavenge (NO˙), (ONOO−), singlet oxygen 
(1O2), superoxide anion radical (O2-), hydrogen peroxide (H2O2), and hypochlorous acid (HOCl) and these 
investigations were conducted by using pure chemical systems, in vitro, in vivo and in silico 
methodologies[115,151,160–164,152–159]. The rate of scavenging of OH• by melatonin has been found 
to be quite similar to that of other well-known highly efficient OH• scavengers. This is a rate constant 
similar to that of other highly effective scavengers such as ascorbic acid, α-tocopherol and vitamins. Along 
with this, the melatonin has been found to play a key role in protection of rats who exposed to ionizing 
radiation. Melatonin has been shown to act as peroxyl radical (LOO-) scavenger, infact during the 
propagation of lipid peroxidation it acts as a chain breaking antioxidant [165]. Even though melatonin 
was ineffective in directly neutralizing the LOO- but it was able to retard iron-catalyzed oxidation of lipids 
thus acted as a preventive antioxidant of the metal ion deactivating agents [165]. Antunes suggested that 
melatonin can be of less importance in interrupting the lipid peroxidation under cellular environment 
because of its limited ability to function as a LOO˙ scavenger. The previous reports indicating that 
melatonin is a significant antioxidant and it has been shown that the administration of melatonin highly 
reduce tissue damage and abnormal physiology of heart, brain and spinal cord [166–169]. Different 
biochemical and molecular biological studies have shown the antioxidant activity of melatonin to be 
beneficial for heart under anoxia/hypoxia and reoxygenation conditions [170–173]. Melatonin, a 
molecule with highly effective protector against radiation exposure having very low toxicity [174,175]. 
By lowering electron leakage and reducing free radical generation melatonin also increases the efficiency 
of mitochondrial electron transport chain (ETC) [174]. Mitochondria are a serious source of free radicals 
and therefore the inner mitochondrial membrane is that the site of the ETC comprises a system of oxido-
reductant protein complexes like (complexes I, II, III and IV). Furthermore, in aerobic cells, mitochondrial 
oxidative phosphorylation is responsible for the generation of about 90–95% of the total ATP. The 
deficiencies in the ETC can lead to the leakage of electrons which later form free radicals which results in 
molecular damage in mitochondria. Further, this damage can lead to a group of diseases collectively 
referred as mitochondria related diseases. In addition to this, the active effect of melatonin at 
mitochondrial level is suggested by a various number of observations like i) efficient scavenger of ROS 
abundantly produced in mitochondria; ii), Even mitochondria cannot synthesize GSH (it is taken from the 
cytosol), but they do possess GPx and GR for GSH cycling and both enzymes are stimulated by melatonin; 
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iii), anti-apoptotic effects of melatonin; apoptosis originating from mitochondria; iv), the concentration of 
melatonin is higher in mitochondria as compared to other cell organelles [176] 
 
METABOLITES OF MELATONIN AS ANTIOXIDANTS  
The metabolites of melatonin are also powerful free radical scavengers. N1-acetyl-N2-formyl-5-
methoxykynuramine (AFMK) is one among the metabolites of melatonin having antioxidant activity and 
is it formed by both enzymatic [176–180] and non-enzymatic [115,181–186] metabolic pathways. 
Further, Deformylation of AFMK in turn leads to the formation of N1-acetyl-5- methoxykynuramine 
(AMK). Both AFMK and AMK have been found to exhibit protective effects against oxidative stress [187]. 
AFMK decreases lipid peroxidation and oxidative DNA damage and prevents neuronal cell injuries caused 
by H2O2 and β-amyloid peptide [188]. In addition to this, AFMK has been found to protect against high 
energy charged particle radiation induced oxidative damage to the brain which probably has been 
hypothesized because of its free radical scavenging activity [189–191]. This hypothesis conducted by the 
assessment that AFMK can efficiently scavenge OH• radicals. As compared to AFMK, its deformylation 
product i.e. AMK are considered to be a really good and versatile radical scavenger with a capability of 
deactivating a good sort of other oxidants[186,192]. Furthermore, as per their antioxidant capability 
AFMK has been reported to be a less effective protector than AMK and melatonin, in fact, AMK was found 
to be a potent singlet oxygen scavenger. Additionally, it has been reported that the efficiency of AMK for 
scavenging ROS and preventing protein oxidation to be above than that of AFMK. Hence, it seems that 
generally, the protective role of melatonin and metabolites against oxidative stress is consistent with 
following increasing order AMK > melatonin > AFMK [193–198].  
 
CONCLUSION 
Due to multiple functions of the mitochondria in the cell, any disturbance in this organelle might have a 
considerable impact on the functioning of the cell and obviously on the entire organism. One of the main 
and important objectives of this review is regarding about aging of brain associated with mitochondrial 
dysfunction and the role of melatonin in the treatment of mitochondrial pathologies. Oxidative stress has 
been implicated in the pathogenesis of a number of neurodegenerative diseases and cancer. The 
abnormal function of mitochondria, decreased respiratory enzyme complex activities, increased electron 
leakage, and Ca2+ entry also gets increased, all of these abnormalities have been shown a key role in the 
pathophysiology of neurodegenerative disorders. Mitochondrial changes are not only observed at the 
level of ETC dysfunction or electron leakage or oxidative damage in various neurodegenerative diseases, 
such as AD, Parkinson’s disease (PD) or Huntington’s disease (HD), but also observed in a disturbed 
balance between mitochondrial fusion and fission, with consequences for intracellular distribution of 
these organelles. In neurodegenerative diseases the mitochondrial density decreases especially in the cell 
periphery of neurons which is associated with reduced H+ electrochemical gradient and ATP production, 
increases in radical formation and losses of spines at neurites. This key role of mitochondria in 
neurodegenerative diseases indicates that supporting the integrity and functioning of these organelles 
should be given a high priority, thereby reducing electron leakage and radical formation. Even though 
there was no convincingly effective treatment is to date available for most mitochondrial dependent 
diseases, an interesting and, perhaps, promising therapeutic approach might consist in the use of free 
radical scavengers and/or antioxidants to prevent/counteract the damage induced by ROS. In relevant to 
this, melatonin treatment may become a first line therapy due to its multiple actions on mitochondria. 
Actually, mitochondria accept melatonin in a concentration and time dependent manner and, once inside 
the organelle, it exerts a series of actions with the result of maintaining their bioenergetic capacity. 
Furthermore, melatonin increases the activity of the respiratory chain and the ATP production, reducing 
at the same time the O2 consumption. Consequently, melatonin avoids an excess of ROS. Melatonin also 
has been reported as an effective antioxidant both in vivo and in vitro model systems. And also, various 
studies have revealed that melatonin has been very effective in preventing Aβ induced toxic effects on 
neuronal cells in AD patients. The metabolites of melatonin also having antioxidant activity. 
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