Bulletin of Environment, Pharmacology and Life Sciences Bull. Env. Pharmacol. Life Sci., Vol 7 [2] January2018 : 05-09 ©2017 Academy for Environment and Life Sciences, India Online ISSN 2277-1808 Journal's URL:http://www.bepls.com CODEN: BEPLAD Global Impact Factor 0.876 Universal Impact Factor 0.9804 NAAS Rating 4.95

**ORIGINAL ARTICLE** 



**OPEN ACCESS** 

# Study of Genetic Variability and Fodder Yield Components in Forage Sorghum (*Sorghum bicolor* L. Moench)

Dharmendra Prasad Chaudhary<sup>1\*</sup>, Rohit Kumar Saini<sup>2</sup>, Brijesh Kumar Maurya<sup>2</sup>, Manish Sharma<sup>1</sup>, Rajendra Kumar<sup>2</sup>, Ramraj Sen<sup>2</sup> And S.K. Singh<sup>3</sup>

1. M.Sc. (Student), Department of Genetics and Plant Breeding, SVPUA&T Modipuram, Meerut (250110)

2. Ph.D. (Research Scholar), Department of Genetics and Plant Breeding, SVPUA&T Modipuram,

Meerut (250110)

3. Associate Professor, Department of Genetics and Plant Breeding, SVPUA&T Modipuram, Meerut (250110)

**Corresponding Email:** rohitsaini232@gmail.com

### ABSTRACT

The present investigation consists of 34 sorghum genotypes and the experiment was conducted during Kharif-2015 in Randomized Block Design with three replications. The data were recorded for 12 quantitative characters to study genetic variability, heritability and genetic advance. On the basis of mean performance, high green fodder yield per plot was exhibited by the genotype HJ-513. Analysis of variance among 34 genotypes showed a significant difference for all characters studied. The highest genotypic coefficient of variation (GCV) & phenotypic coefficient variation (PCV) was observed for a number of leaves per plant, leaf stem ratio and green fodder yield indicating that these characters could be used as a selection for crop improvement. On the basis of high estimates of heritability coupled with high genetic advance was observed for plant height, leaf length, leaf area, number of leaves per plant, leaf stem ratio and green fodder yield indicating a predominance of additive gene effects and possibilities of effective selection for the improvement of these characters.

Keywords: Sorghum, Genetic variability, Heritability and Genetic Advance.

Received 10.10.2017

Revised 27.11.2017

Accepted 30.12.2017

### INTRODUCTION

Sorghum *(Sorghum bicolor L. Moench)* is one of the most important cereal crop grown in Africa, Asia, USA, Australia, and Latin America. Its importance after wheat, maize, rice and barley is because of its good adaptation to a wide range of ecological conditions, low input cultivation and diverse uses [2]. In India, it is third major cereal after rice and wheat and it is most important food crop grown under rainfed conditions. Knowledge of genetic diversity of a crop usually helps the breeder in choosing desirable parents for the breeding program and gene introgression from distantly related germplasm. The more diverse genotypes or accessions can be crossed to produce superior hybrids with resistance to abiotic and biotic stresses. Understanding the wealth of genetic diversity in sorghum will facilitate the further improvement of this crop for its genetic architecture [3]. Sorghum is an important *Kharif* fodder crop of India. It has a potential to produce high green fodder yield and therefore, needs to be developed. To exploit its potentiality for fodder yield, several genetic improvement techniques have been done. Fodder yield, the most important and polygenically controlled complex character, is also governed by many physiological changes within the plant and also influenced by many environments in which the plant is grown. Hence it is not an easy character for selection. The success of the breeding program depends upon the quantum of genetic variability available for exploitation and the extent to which the desirable characters are heritable Variability refers to the presence of differences among the individuals of plant population. Variation results due to difference either in genetic constitution of the individual of a plant population or an environment, they have grown. The existence of variability is essential for improvement

### Chaudhary et al

of genetic material. The total area, production and productivity of sorghum are 6.08 million hectares, 4.24 million tones and 0.70 metric tons per hectare respectively in India [1].

### MATERIAL AND METHOD

The material for the present investigation consists of 34 sorghum genotypes were grown in a Randomized block design with three replications during *Kharif*- 2015 at the Crop Research centre, Chirodi of Sardar Vallabhbhai Patel University of Agriculture, Technology, Meerut. The experiment was sown on 5 June 2015 in a 4-row plot of 5-meter length. The row to row spacing was 30 cm and plant to plant distance was 10 cm. Five representative plants for each genotype in each replication were randomly selected to record observations on days to 50% flowering, days to milking stage, plant height, leaf breadth (cm), leaf area (cm<sup>2</sup>), stem girth (mm), number of leaves per plant, Leaf stem ratio,total soluble solids (%),Protein content (%), green fodder yield (Kg/Plot). The variability was estimated as per procedure for analysis of variance suggested by Panse and Sukhatme [4]. PCV and GCV were calculated by the formula given by Burton [5].Heritability in a broad sense (h2) by Burton and De Vane [6] and genetic advance were calculated by using the procedure given by Johnson *et al.* [7].

### **RESULTS AND DISCUSSION**

Genetic variability in any crop is pre-requisite for selection of superior genotypes over the existing cultivars. The analysis of variance for different characters indicated the existence of highly significant differences for all the 12 characters study at 1% level of significance suggesting each and every genotype are genetically divergent from each other and there is ample scope for selection of characters from these diverse sources for yield and its components (Table 1). These findings were in accordance with the findings of Vedansh et al. [11] and Khandelwal et al [9]. A wide range of variance was observed for all the 12 characters. In general the phenotypic coefficient of variance was higher than genotypic coefficient variance for all yield and its contributing characters indicate the influence of environmental factors on these traits. The highest PCV and GCV was recorded for number of leaves per plant (25.037 and 28.177) followed by leaf stem ratio (25.929 and 25.516) and green fodder yield (26.762 and 26.607), Similar results were also reported by Jain and Patel [13], Malik et al. [10], Khandelwal et al [14] and Ranjith et al.[8]. Coefficients of variation studies indicated that the estimates of PCV were slightly higher than the corresponding GCV is presenting table-2 among all traits and high values of genotypic coefficient of variation (GCV) and phenotypic coefficient of variation (PCV) for these traits suggested the possibility of improvement through selection of these attributes. Closely relationship between GCV and PCV was found in all the characters and PCV values were slightly greater than GCV, revealing very little influence of environment for their expression. The amount of genetic variation considered alone will not be of much use to the breeder unless supplemented with the information on heritability estimate, which gives a measure of the heritable portion of the total variation. It has been suggested by Burton and Devane [6] that the GCV along with heritability estimate could provide a better picture of the amount of advance to be expected by phenotypic selection. Since the genetic advance is dependent on phenotypic variability and heritability in addition to selection intensity, the heritability estimates in conjunction with genetic advance will be more effective and reliable in predicting the response to selection [7]. Heritability in a broad sense includes both additive and non-additive gene effects. While, narrow sense heritability includes only additive components [7]. In the present study, heritability in a broad sense was estimated. Highest heritability in broad sense was observed (> 60%) for all the characters viz., days to 50%flowering (96.300), days to milking stage (96.000), plant height (97.400), leaf breadth (82.900), leaf length (72.600), leaf area (81.800), stem girth (69.600), number of leaves per plant (86.200), leaf stem ratio (94.500), total soluble solids (77.300), protein content (67.200) and green fodder yield (98.100). This indicates that these characters may be most potential for further improvement. Studied have been reported earlier also by Deepalakshmi et al. [15], Malik et al. [9] and Khandelwal et al [14]. Maximum genetic advance expressed as a percentage of the mean was revealed high (>20%) for plant height (29.842), leaf length (23.730), leaf area (23.688), number of leaves per plant (21.378), leaf stem ratio (29.076) and green fodder yield (23.893). Moderate genetic advance as a percentage of the mean (10-20%) was observed for days to 50% flowering (10.856) and stem girth (17.472). High heritability coupled with high genetic advance was revealed plant height, leaf length, leaf area, number of leaves per plant, leaf stem ratio and green fodder yield, indicating the preponderance of additive gene effects for these traits and hence may prove useful for effective selection. High heritability coupled with the high genetic advance for some of these traits have also been reported earlier by Jain and Patel [13], Khandelwal et al [9], Rana et al [12], Khandelwal et al [14], and Ranjith et al. [8]. This indicates the substantial contribution of additive genetic variance in the expression of these traits and can be more

### Chaudhary et al

useful in hybridization and selection for higher grain yield and these characters are largely controlled by additive gene action.

|                         |       |                          |                          |                   | L                 | . MO             | ench                         | )               |                            |                 |                             |                         |                                 |
|-------------------------|-------|--------------------------|--------------------------|-------------------|-------------------|------------------|------------------------------|-----------------|----------------------------|-----------------|-----------------------------|-------------------------|---------------------------------|
| Source of<br>variations | d. f. | Days to 50%<br>flowering | Days to milking<br>stage | Plant height (cm) | Leaf breadth (cm) | Leaf length (cm) | Leaf area (cm <sup>2</sup> ) | Stem girth (mm) | No. of leaves per<br>plant | Leaf stem ratio | Total soluble solids<br>(%) | Protein content<br>رمیر | Green fodder yield<br>(kg/plot) |
| Replication             | 2     | 1.970                    | 3.362                    | 7.299             | 0.083             | 80.296           | 287.893                      | 1.148           | 0.362                      | 0.001           | 0.252                       | 0.063                   | 1.087                           |
| Treatment               | 33    | 209.044**                | 176.667**                | 4250.372**        | 1.097**           | 100.646**        | 6139.580**                   | 10.756**        | 6.591**                    | 1.007**         | 4.720***                    | 1.874**                 | 80.323**                        |
| Error                   | 66    | 2.586                    | 2.403                    | 36.473            | 0.070             | 11.206           | 421.968                      | 1.362           | 0.333                      | 0.001           | 0.420                       | 0.261                   | 0.499                           |

# Table-1 Analysis of variance (ANOVA) for twelve characters of forage sorghum (Sorghum bicolor L. Moench)

\*, \*\* significant at 5% and 1% level, respectively

| Table-2 Estimates of variability parameters for twelve characters in forage sorg | hum ( <i>Sorghum</i> |
|----------------------------------------------------------------------------------|----------------------|
| bicolor L. Moench)                                                               |                      |

|                                 |         | DICOIDI | L. Moenchj                      |                    |                                    |
|---------------------------------|---------|---------|---------------------------------|--------------------|------------------------------------|
| Character                       | GCV (%) | PCV (%) | Heritability %<br>(broad sense) | Genetic<br>advance | Genetic advance<br>( as % of mean) |
| Days to 50%<br>flowering        | 10.312  | 10.504  | 96.300                          | 6.776              | 10.856                             |
| Days to milking<br>stage        | 8.188   | 8.356   | 96.000                          | 5.385              | 6.529                              |
| Plant height (cm)               | 14.673  | 14.862  | 97.400                          | 26.222             | 29.842                             |
| Leaf breadth<br>(cm)            | 8.436   | 9.265   | 82.900                          | 1.097              | 5.826                              |
| Leaf length (cm)                | 7.818   | 9.170   | 72.600                          | 20.589             | 23.730                             |
| Leaf area (cm <sup>2</sup> )    | 12.708  | 14.045  | 81.800                          | 21.373             | 23.688                             |
| Stem girth (mm)                 | 10.160  | 12.171  | 69.600                          | 3.043              | 17.472                             |
| No. of leaves per<br>plant      | 28.177  | 25.037  | 86.200                          | 22.762             | 21.378                             |
| Leaf stem ratio                 | 25.516  | 25.929  | 94.500                          | 20.097             | 29.076                             |
| Total soluble<br>solids (%)     | 5.917   | 8.101   | 77.300                          | 2.168              | 8.834                              |
| Protein content                 | 1.222   | 3.682   | 67.200                          | 1.238              | 8.960                              |
| Green fodder<br>yield (kg/plot) | 26.607  | 26.762  | 98.100                          | 20.527             | 23.893                             |
| ۱ <u> </u>                      |         |         |                                 |                    |                                    |

## CONCLUSION

In the present investigation which included 34 genotypes of sorghum was carried out in order to study the nature and amount of variability, heritability and genetic advance for 12 quantitative characters. On the basis of mean performance, high green fodder yield per plot was exhibited by the genotype HJ-513. Analysis of variance among 34 genotypes showed a significant difference for all characters studied. The highest genotypic coefficient of variation (GCV) & phenotypic coefficient variation (PCV) was observed for

a number of leaves per plant, leaf stem ratio and green fodder yield, which indicates that scope of importance with respect to these characters through selection. High heritability coupled with high genetic advance as percent of mean estimated for plant height, leaf length, leaf area, number of leaves per plant, leaf stem ratio and green fodder yield, indicating the preponderance of additive gene effects for these traits and hence may prove useful for effective selection.

### REFERENCE

- 1. USDA report (2017). Area and production of sorghum. Pp- 8.
- Aruna, C., Bhagwat, V.R., Madhusudhana, R., Vittal Sharma, Hussain, T., Ghorade, R.B., Khandalkar, H.G., Audilakshmi, S. and Seetharama, N. (2011). Identification and validation of genomic regions that affect shoot fly resistance in sorghum [Sorghum bicolor (L.) Moench]. *Theory Applied Genetics*. 122: 1617–1630.
- 3. Santosh K., Girish, G., Dharmaraj, P. S. and Lokesha, R. 2015. Genetic diversity analysis in germplasm lines of Rabi sorghum [Sorghum bicolor (L.) Moench] based on quantitative traits. *International Journal of Plant Sciences*. 9(1):129-132.
- 4. V. G. Panse and P. V. Sukhatme, (1967). "Statistical Methods for Agricultural Workers," 2nd Edition, Indian Council of Agricultural Research, New Delhi.
- 5. Burton, G.W. (1952) Quantitative inheritance in grasses. Proceedings of 6th International Grassland Congress, 1, 277-283.
- 6. Burton, G.W. and de Vane, E.H. (1953) Estimating Heritability in Tall Fescue (Festuca arundincea) from Replicated Clonal Material. Agronomy Journal, 45, 474-481.
- 7. Johnson HW; Robinson HF, and Comstock RE, 1955. Estimates of genetic and environmental variability in soybean. Agron. J., 47: 314-318.
- 8. RANJITH, P., GHORADE, R B., KALPANDE, VV and DANGE, AM. (2017). Genetic variability, heritability and genetic advance for grain yield and yield components in sorghum. *International Journal of Farm Sciences* 7(1): 90-93.
- 9. Khandelwal, V.; Shukla, M.; Jodha, B. S.; Nathawat, V. S. and Dashora, S. K. 2016. Genetic Parameters and Character Association in Sorghum *(Sorghum bicolor L. Moench)* Indian Journal of Science and Technology, *Vol* 8(22), 73902,
- 10. Malik, A.; Singh, S. K.; Chand, P.; Singh, B.; and Singh, D. K. (2015). Genetic Variability, heritability and Genetic Advance Studies on forage sorghum *Progressive Agriculture* 15 (1): 92-94.
- 11. Vedansh; Singh, S. K.; Kerkhi, S. A.; Singh, A.; Kumar, M. and Kumar, V. 2010. Variability, Heritability and genetic advance for forage yield and quality traits in forage sorghum *(Sorghum bicolor L. Moench)* Progressive Agriculture. 10 (2): 400-401.
- 12. Rana, H. R.; Prajapati, K. N.; Suthar, K. J. and Kher, H. R. 2016. study of variability, correlation, and path analysis in Sorghum (*Sorghum bicolor* L. Moench) the bioscan 11(1): 259-263 ( supplementary on agronomy).
- 13. Jain, S. K. and Patel, P. R. 2014. Characters association and path analysis in sorghum (*Sorghum bicolor* L. Moench) and their parents. *Annals of Plant and Soil Research*, 16 (2): 107-110.
- 14. Khandelwal, V.; Shukla, M.; Nathawat, V. S. and Jodha, B. S. 2015. Correlation and path coefficient analysis for agronomical traits in sorghum *(Sorghum bicolor L. Moench)* under shallow saline soil condition in arid region Electronic Journal of Plant Breeding, 6(4): 1143-1149.
- 15. Deepalakshmi, A. J. and Ganesamurthy, K. (2007). Studies on genetic variability and character association in *kharif* sorghum *licolor* L. Moench). *Indian Journal of Agricultural Research*. 41(3): 177-182.

# CITATION OF THE ARTICLE

D P Chaudhary, R K Saini, B K Maurya , M Sharma, R Kumar, R Sen And S.K. Singh. Study of Genetic Variability and Fodder Yield Components in Forage Sorghum *(Sorghum bicolor L. Moench)*. Bull. Env. Pharmacol. Life Sci., Vol 7 [2] January2018 : 05-09

### Chaudhary et al

# APPENDIX-I Mean performance of forage sorghum (*Sorghum bicolor* L. Moench) genotypes for twelve characters

|                      |                             |                             |                         |                         | Ullai                  | acters                             |                        |                        |                       |                            |                           |                          |
|----------------------|-----------------------------|-----------------------------|-------------------------|-------------------------|------------------------|------------------------------------|------------------------|------------------------|-----------------------|----------------------------|---------------------------|--------------------------|
| Genotypes            | Days to<br>50%<br>flowering | Days to<br>milking<br>stage | Plant<br>height<br>(cm) | Leaf<br>breadth<br>(cm) | Leaf<br>length<br>(cm) | Leaf<br>area<br>(cm <sup>2</sup> ) | Steam<br>girth<br>(mm) | No of<br>Leaves<br>per | Leaf<br>stem<br>ratio | Total<br>soluble<br>solids | Protein<br>content<br>(%) | Green<br>fodder<br>yield |
| Jawahar              | 81.333                      | 94.666                      | 262.400                 | 6.446                   | 72.133                 | 330.166                            | 16.600                 | plant<br>13.266        | 0.330                 | (%)<br>6.600               | 6.296                     | (kg/Plot)<br>31.400      |
| chari-69<br>SSG-59-3 | 92.000                      | 106.333                     | 251.33                  | 7.340                   | 74.933                 | 390.523                            | 18.666                 | 13.000                 | 0.340                 | 8.066                      | 5.286                     | 30.600                   |
| HC-136               | 102.000                     | 111.000                     | 262.266                 | 7.413                   | 70.600                 | 371.596                            | 18.866                 | 12.666                 | 0.316                 | 7.266                      | 8.076                     | 34.166                   |
| HC-171               | 84.333                      | 99.000                      | 271.799                 | 8.100                   | 66.933                 | 384.916                            | 17.766                 | 14.000                 | 0.336                 | 8.000                      | 6.266                     | 34.506                   |
| HC-260               | 74.000                      | 87.000                      | 310.600                 | 7.093                   | 70.466                 | 354.922                            | 19.466                 | 15.133                 | 0.410                 | 10.133                     | 6.500                     | 38.500                   |
| HC-308               | 82.000                      | 96.000                      | 286.200                 | 7.153                   | 74.533                 | 345.214                            | 17.133                 | 13.800                 | 0.380                 | 7.733                      | 7.343                     | 33.433                   |
| HJ-513               | 101.333                     | 109.666                     | 281.533                 | 8.040                   | 71.000                 | 405.260                            | 20.933                 | 14.200                 | 0.356                 | 8.733                      | 8.443                     | 40.600                   |
| PC-7                 | 82.333                      | 94.000                      | 278.733                 | 7.193                   | 69.466                 | 354.704                            | 15.400                 | 13.533                 | 0.276                 | 8.133                      | 6.420                     | 37.000                   |
| PC-3                 | 72.000                      | 86.333                      | 232.800                 | 6.940                   | 63.066                 | 310.752                            | 17.000                 | 12.200                 | 0.310                 | 6.533                      | 6.310                     | 27.000                   |
| PC-5                 | 93.000                      | 104.666                     | 271.333                 | 6.480                   | 74.400                 | 342.223                            | 20.666                 | 13.800                 | 0.360                 | 7.800                      | 6.453                     | 30.533                   |
| U P Chari-1          | 73.666                      | 86.666                      | 282.200                 | 7.226                   | 62.800                 | 322.205                            | 17.266                 | 13.400                 | 0.310                 | 6.933                      | 6.400                     | 26.133                   |
| U P Chari -2         | 92.333                      | 103.333                     | 272.266                 | 7.273                   | 71.000                 | 366.623                            | 18.400                 | 11.866                 | 0.330                 | 7.400                      | 6.143                     | 32.000                   |
| CSV -15              | 79.333                      | 93.000                      | 181.933                 | 6.386                   | 54.733                 | 278.030                            | 14.066                 | 11.333                 | 0.290                 | 6.800                      | 5.606                     | 22.666                   |
| M P- Chari           | 77.333                      | 92.333                      | 285.200                 | 6.840                   | 74.466                 | 361.632                            | 16.466                 | 14.866                 | 0.316                 | 7.466                      | 6.110                     | 29.200                   |
| H J -541             | 82.000                      | 95.333                      | 292.533                 | 6.933                   | 75.600                 | 372.366                            | 18.800                 | 15.066                 | 0.410                 | 6.733                      | 7.153                     | 32.266                   |
| GFS-4                | 70.333                      | 82.666                      | 238.333                 | 6.433                   | 64.466                 | 294.495                            | 17.466                 | 12.000                 | 0.300                 | 10.666                     | 6.700                     | 28.933                   |
| GFS-5                | 81.666                      | 94.000                      | 273.800                 | 5.666                   | 73.33                  | 295.034                            | 17.533                 | 13.933                 | 0.273                 | 7.266                      | 6.643                     | 31.300                   |
| SL – 44              | 73.000                      | 86.000                      | 265.133                 | 7.313                   | 66.933                 | 347.548                            | 16.333                 | 13.666                 | 0.416                 | 6.733                      | 5.700                     | 30.600                   |
| COFS-29              | 82.600                      | 94.000                      | 248.800                 | 6.986                   | 67.466                 | 334.722                            | 16.200                 | 13.133                 | 0.316                 | 10.466                     | 7.120                     | 35.400                   |
| PC-4                 | 79.333                      | 91.000                      | 271.666                 | 7.546                   | 75.400                 | 404.014                            | 20.666                 | 13.600                 | 0.313                 | 7.000                      | 7.520                     | 31.826                   |
| PC-6                 | 72.666                      | 86.000                      | 241.533                 | 7.246                   | 68.933                 | 354.356                            | 17.466                 | 12.866                 | 0.316                 | 6.933                      | 6.616                     | 28.533                   |
| Rajasthan<br>chari-1 | 80.666                      | 91.333                      | 265.000                 | 6.400                   | 73.800                 | 335.017                            | 16.800                 | 14.133                 | 0.390                 | 5.000                      | 7.130                     | 26.600                   |
| Rajasthan<br>chari-2 | 82.200                      | 96.666                      | 266.466                 | 7.233                   | 69.000                 | 319.645                            | 17.866                 | 13.800                 | 0.390                 | 5.333                      | 6.553                     | 28.800                   |
| Jawahar<br>chari-6   | 90.333                      | 103.000                     | 279.866                 | 7.193                   | 74.800                 | 381.354                            | 15.200                 | 13.733                 | 0.346                 | 6.333                      | 5.586                     | 40.400                   |
| SSV-84               | 78.000                      | 93.000                      | 190.866                 | 6.133                   | 63.266                 | 275.480                            | 16.000                 | 10.333                 | 0.290                 | 7.066                      | 5.940                     | 24.666                   |
| SPV-669              | 69.666                      | 82.666                      | 186.466                 | 7.153                   | 67.133                 | 340.984                            | 13.400                 | 11.866                 | 0.233                 | 6.533                      | 5.610                     | 24.533                   |
| Pusa chari-<br>615   | 72.333                      | 85.333                      | 292.200                 | 7.480                   | 80.866                 | 429.451                            | 18.200                 | 13.200                 | 0.410                 | 7.000                      | 6.453                     | 41.666                   |
| G-48                 | 81.000                      | 92.666                      | 182.200                 | 6.513                   | 63.333                 | 293.008                            | 17.800                 | 10.333                 | 0.366                 | 8.000                      | 6.673                     | 25.533                   |
| G-46                 | 78.666                      | 91.000                      | 210.200                 | 7.206                   | 70.200                 | 359.214                            | 14.333                 | 11.066                 | 0.286                 | 7.066                      | 5.586                     | 27.600                   |
| ICSV-700             | 69.666                      | 83.333                      | 190.066                 | 5.786                   | 61.733                 | 253.660                            | 16.000                 | 9.466                  | 0.270                 | 7.533                      | 5.630                     | 24.733                   |
| Pusa chari-<br>1     | 74.000                      | 87.666                      | 272.266                 | 7.146                   | 75.200                 | 381.574                            | 18.600                 | 12.000                 | 0.340                 | 9.666                      | 7.206                     | 29.583                   |
| Pusa chari-<br>6     | 77.666                      | 89.333                      | 282.600                 | 6.280                   | 76.333                 | 340.369                            | 19.266                 | 13.333                 | 0.306                 | 8.000                      | 6.420                     | 30.600                   |
| Pusa chari -<br>23   | 82.000                      | 93.333                      | 309.666                 | 7.533                   | 76.933                 | 411.789                            | 15.200                 | 14.866                 | 0.436                 | 7.533                      | 8.386                     | 40.400                   |
| CSV-27               | 71.00                       | 82.333                      | 194.00                  | 5.633                   | 59.200                 | 236.775                            | 20.333                 | 9.866                  | 0.293                 | 7.266                      | 5.873                     | 24.150                   |
| Mean                 | 80.441                      | 93.078                      | 255.419                 | 6.933                   | 69.837                 | 343.509                            | 17.416                 | 12.921                 | 0.334                 | 7.521                      | 6.534                     | 31.060                   |
| S.E.                 | 0.928                       | 0.895                       | 3.486                   | 0.153                   | 1.932                  | 11.859                             | 0.673                  | 0.333                  | 0.006                 | 0.374                      | 0.295                     | 0.408                    |
| C.D.5%               | 2.621                       | 2.527                       | 9.845                   | 0.432                   | 5.457                  | 33.487                             | 1.902                  | 0.941                  | 0.019                 | 1.056                      | 0.833                     | 1.152                    |
| Range<br>Lowest      | 69.667                      | 82.333                      | 181.933                 | 5.633                   | 54.733                 | 236.775                            | 13.400                 | 9.466                  | 0.233                 | 5.000                      | 5.286                     | 22.666                   |
| Range<br>Highest     | 102.000                     | 111.000                     | 310.600                 | 8.100                   | 80.866                 | 429.451                            | 20.933                 | 15.133                 | 0.436                 | 10.666                     | 8.443                     | 41.666                   |