

REVIEW ARTICLE

OPEN ACCESS

A Review on Novel Endophytes Isolated from *Cadaba fruticosa* (L.) Druce. "Mycosynthesis of Silver Nanoparticles and their Biological Activities

P. S. Jadhav* A. A. Kamble, R. N. Deshmukh

Research Centre in Botany, New Arts, Commerce and Science College, Parner – 414 302, India.

*Corresponding author Email: pratikshajadhav0601@gmail.com

ABSTRACT

Cadaba fruticosa (L.) Druce plant is the member of family Capparaceae. It is also called as Bahuguni. *C. fruticosa* is endangered medicinal shrub. Fungal endophytes used as a reducing and stabilizing agent in the green synthesis of silver nanoparticles is important due to easy to synthesis, low toxic, large quantity of bioactive compounds and cost effective. The present review describes the endophytic fungi isolated from different parts of *Cadaba fruticosa* (L.) Druce. Which is namely *Nigrospora oryzae*, *Fusarium proliferatum*, *Fusarium verticillioides*, *Meyerozyma caribbica*, *Neopestaloeiopsis cubana*, *Fusarium falciforme*. The identification of endophytes was done using PCR techniques. The accession number. is MN844204.1, ON149693.1, ON149684.1, MT508807.1, OP785128.1, MT251175.1. The isolated endophytic fungi is used for the extracellular biosynthesis of silver nanoparticles (AgNPs), along with their characterization methods (UV-Visible Spectroscopy, Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray Spectroscopy (EDS), Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD) and Zeta potential) and their biological applications, include antimicrobial activity, antioxidant activity and anticancer activity. Toxic chemicals are adsorbed onto AgNPs produced by different physical and chemical techniques, making them costly. For the green synthesis of AgNPs, which are crucial due to their lower toxicity, effective approaches, simple, cost effective and eco-friendly behavior, therefore efficient methods have been selected.

Keywords: *Cadaba fruticosa* (L.) Druce, Endophytes, Mycosynthesis, Silver Nanoparticles, Characterization, Anticancer Activity.

Received 21.10.2025

Revised 29.11.2025

Accepted 30.12.2025

INTRODUCTION

Cadaba fruticosa (L.) Druce. is endangered medicinal shrub (35). And also called as Bahuguni. The wild plant *Cadaba fruticosa* (L.) Druce is a member of the Capparaceae family, a plant with numerous significant therapeutic qualities. Primarily used as an antioxidant, antimicrobial, anticancer, and antidiabetic (54). *Cadaba fruticosa*, also known as "Kalitaka" or "Indian *Cadaba*," is a significant medicinal plant native in the deciduous forests of Maharashtra and the tropical region of the Indian subcontinent and frequently found in dry arid regions. The significance of these medicinal plants for public health care in impoverished countries has also been acknowledged by the World Health Organization (WHO). The leaves and roots of the plant are noted to be used to cure some urinary complaints, as well as infestation, swelling, eczema, constipation, gonorrhea, and other ailments (13).

Cadaba fruticosa is a promising phytochemical and pharmacological candidate with anti-inflammatory, antioxidant, and anticancer activities. Bioactive substances demonstrated their affinity for important cancer-related proteins, such as SMAD, which is involved in the progression of cancer, in the *Cadaba fruticose* docking study. Computational techniques like density functional theory (DFT) analyses and molecular dynamics simulations have further clarified the stability and electronic characteristics of these interactions, offering important insights into their therapeutic potential (36, 22). The *Cadaba fruticosa* (L.) Druce is used as an antiphlogistic, deobstruent, emmenagogue, anthelmintic, and to treat ulcers and syphilis (7). According to reports from 2005, *Cadaba fruticosa* leaves have antimicrobial properties (17). The plant's leaves were used to isolate *Cadabalone* and *Cadabicine* (18). The leaves of this plant are used in traditional medicine to cure various diseases. Alkaloids, flavonoids, tannins, terpenoids, and phenolic phytochemicals are found in *Cadaba fruticosa* (L.) Druce, which supports the plant's potential for therapeutic use. At a concentration of 5 mg/ml, the ethanol extract of the wild plant has the highest

percentage of anticancer action 53.14%, while the tissue culture *Cadaba* plant has the highest percentage 54.78%. As concentration increased, the percentage of inhibition increased as well (54). The human lung malignant cell line A 549 in vitro to test the anticancerous activity of *C. fruticosa* leaves. Using ethyl acetate extract, ethanol extract, and leaf aqueous extracts, they discovered that ethyl acetate extract is mostly cytotoxic and that malignant cells initiate typical apoptotic processes, such as cell shrinkage, chromatin condensation, and nucleus disintegration (60). Structural constituents and their pharmacological properties of *Cyathoclina purpurea* - (Buch-Ham ex D. Don.) Kuntze, A specified medicinal plant (30).

ENDOPHYTES

Endophytes defined as the fungi that are found on plant surfaces, Anton de Bary first used the term "endophytes" (endo = inside; phytón = plant) in 1866 to describe fungi that reside inside the tissues of their host plants (20). The most prevalent microorganisms that are endophytes are fungi and bacteria. Fungi are the most frequently isolated of them. It turns out that the endophytes of the most bulk of plants have not been investigated. As a result, there are many chances to recover new taxa, biotypes, and fungal forms. Only around 100,000 of the estimated 1 million distinct fungal species have been described. Endophytes appear to be a rich and good source of genetic variation and new, unidentified species (12). Endophytic of fungi isolated from different parts of *Cadaba fruticosa* (L.) Druce. Which is namely *Nigrospora oryzae*, *Fusarium proliferatum*, *Fusarium verticillioides*, *Meyerozyma caribbica*, *Neopestaloeiopsis cubana*, *Fusarium falciforme*.

Isolation and characterization of fungal endophytes isolated from medicinal plant *Ephedra pachyclada* as Plant Growth-promoting (32). Investigated the in vitro antibacterial activity of *Cadaba fruticosa* using a variety of solvents, including acetone, benzene, butanol, chloroform, and ethanol, to get leaf extract. They used the disc diffusion method to assess the antibacterial activity against a number of pathogenic species, including *Pseudomonas aeruginosa*, *Bacillus subtilis*, *Salmonella typhi*, *Proteus vulgaris*, *Klebsiella pneumoniae*, *Streptococcus pyogenes*, and *Escherichia coli* (51). The antibacterial and anticancer properties of ethanol and methanol extracts of wild and micropropagated *C. fruticosa* plant were investigated by (31). According to their findings, *Escherichia coli* of both wild and tissue-cultured ethanol extract showed the greatest zone of inhibition, while methanol extract showed the greatest zone of inhibition against *Staphylococcus aureus* and *Streptococcus pyogenes*. The ethanol extract from both wild and tissue-cultured plants showed a greater percentage of anticancer activity. Synthesis of copper nanoparticles (CuNPs) and silver nanoparticles (SNPs) utilizing leaf aqueous extracts of the endangered medicinal plant *Cadaba fruticosa* as bioreducing agents (33). A bacterial or fungal microbe known as an endophyte lives inside the healthy tissues of the host plant, usually without harming it. Endophytic fungus creates the same bioactive natural compounds or derivatives as their host plant by imitating its chemistry (62).

NANOTECHNOLOGY

The newest, most promising, and most active field of contemporary research is "nanotechnology." The technique deals with the creation, synthesis, and control of particles with sizes between 1 and 100 nm (37). The term 'nano' has been originated from the Greek word meaning 'dwarf' i.e. small things. The science and technology of small things called as nanotechnology. Therefore, Nanotechnology is the branch of science deals with the study of various aspects of research and technology. The production of biosynthesized nanoparticles using various plant species and microorganisms, such as algae, bacteria, actinomycetes, and fungi, is currently being used as an effective biological source of green nanoparticles that have attracted the attention of various researchers recently due to their eco-friendliness and ease of production when compared to other chemical and physical methods of production (45). Within both individual atoms and the associated bulk material undergo fundamental changes in their chemical, physical, and biological properties within this size range (4). In the present world, nanotechnology is becoming more and more popular since it is harmless, environmentally friendly, and effective. One of the most important and cutting-edge fields of study and technology is nanotechnology, which is developing at a much faster rate and manipulating matter at the atomic and molecular level. Nanoparticles are microscopic particles. Because of its high reactivity and great surface area to volume ratio, nanotechnology research has garnered enormous attention over the past ten years in all scientific domains, including chemistry, biology, physics, materials science, and engineering. Richard Feynman, an established American physicist and professor at the California Institute of Technology, stated in 1959 that there is much of room at the bottom, which significantly accelerated research on subatomic instruments or nanotechnology. Taniguchi, a Japanese physicist, coined the term "nanotechnology" in 1974.

APPLICATIONS OF MYCONANO TECHNOLOGY

Nanoparticles are synthesized by various means such as chemical, physical and biological methods. However, biological approaches using algae, fungi, microbes, and plants are favoured since they are environment friendly, clean, safe, cost-efficient, simple, and effective sources for high productivity and purity (55). Because of its possible antibacterial, antioxidant, anti-inflammatory, and anticancer properties, silver is frequently taken into consideration while synthesizing nanoparticles. The importance of silver nanoparticles in biomedicine, DNA sequencing, biological sensors, plasmonics, catalysis, energy generation, and clean water technologies has been highlighted by recent developments in nanoscience (48, 63). A developing field of nanotechnology is the biological synthesis of nanoparticles (48, 53). Some sustainable resources for the biological synthesis of nanoparticles include plant extracts (59), bacteria and fungi (40). In terms of cost-effectiveness, ecofriendly, and ease of scaling up for massive production, green synthesis has been shown to be excellent to conventional methods (65). Mukherjee reports a novel biological process for producing AgNPs using the fungus *Verticillium*. When the fungal biomass was exposed to aqueous Ag⁺ ions, the metal ions were reduced intracellularly and AgNPs with a size of 25±12 nm were formed (41). AgNPs are among the most promising metallic nanoparticles in the nanotechnology sector. A significant area of current nanotechnology research is the synthesis of reliable methods for the synthesis of AgNPs (19, 42). AgNPs are used in biomedicine as antifungal (34) and anti-diabetic drugs (9, 44, 56). AgNPs have also been used as drug transporters through active or passive methods, as well as in the diagnosis and treatment of cancer, according to recent studies (5). Now a day we are facing health issues some are major and minor. Major disease causing death where minor diseases disturbed lifecycle of host. 70% of population facing these types of diseases. Controlling and maintenance of these diseases are challenging to world. Nano- material have great approaches to cure pathogenic disease in animals. The maintaining of these types of disease is costly and have equivalent side effects. The biological way to control these types of diseases are not much established. So green technology has great approach to maintain lifestyle disease. Myconano technology is an emerging field of modern science, where fungi are being exploited for the green synthesis of nanoparticles with desirable shape and size.

Table 1: Synthesis of Silver Nanoparticles by Using Different Fungal Species.

Sr. No	Name Of Fungi	Size Of Particles	References
1.	<i>Fusarium Oxysporum</i>	5–13 nm Spherical	(29)
2.	<i>Rhizoctonia solani</i>	2–22 nm Spherical	(6)
3.	<i>Phanerochaete chrysosporium</i>	100 nm	(38)
4.	<i>Guignardia mangifera</i>	5–30 nm	(11)
5.	<i>Fusarium oxysporum</i>	24 nm Spherical	(27)
6.	<i>Fusarium oxysporum</i>	10–20 nm Spherical	(15)
7.	<i>Fusarium solani</i>	5–35 nm	(28)
8.	<i>Aspergillus fumigatus</i>	322.8 nm PDI 0.278 Spherical	(58)
9.	<i>Colleotrichum sp.</i>	5–60 nm Myriad shapes	(8)
10.	<i>Rhizopus stolonifer</i>	2.86 nm Spherical	(1)
11.	<i>Trichoderma viride</i>	2–4 nm Spherical	(25)
12.	<i>Trichoderma longibrachiatum</i>	24.43 nm Spherical	(21)
13.	<i>Epicoccum nigrum</i>	1–22 nm Spherical	(47)
14.	<i>Arthroderra fulvum</i>	20.56 nm Spherical	(66)
15.	<i>Aspergillus flavus</i>	7–10 nm	(24)
16.	<i>Penicillium oxalicum</i>	10–40 nm Spherical	(52)
17.	<i>Sclerotinia sclerotiorum</i>	10–15 nm Spherical	(57)
18.	<i>Guignardia mangifera</i>	5–30 nm Spherical	(11)
19.	<i>Aspergillus oryzae</i>	7–27 nm Spherical	(46)
20.	<i>Trichoderma harzianum</i>	51.10 nm Spherical	(2)
21.	<i>Aspergillus fumigatus</i>	5–25 nm	(64)
22.	<i>Penicillium italicum</i>	33–46 nm	(43)

Fungi have a more advantage over bacteria as well as actinomycetes, because fungi are excellent secretors of proteins leads to a higher yield of green nanoparticles which are highly stable, eco-friendly, cost-effective, and non-toxic (39). High resistance to heavy metals, a simple mass culture of fungi, the production of extracellular nanoparticles that reduce the cost of downstreaming, and other benefits are some of the benefits of using fungi to synthesis nanoparticles (49). Strong cell membrane binding ability, the capability to create a wide range of extracellular enzymes, a high biomass volume, and the potential to grow on inexpensive raw materials are only a few of the many benefits that fungi offer. Therefore, the fungus might be regarded as a ideal option for production of nanoparticles (16). Over the past few years, endophytic

fungi have been thoroughly investigated as abundant sources of novel bioactive natural compounds due to their intricate web of interactions with host plants (61). The endophytic fungus *Nigrospora oryzae*, which was isolated from *Tinospora cordifolia*, produces quercetin, which has neuroprotective properties. (50). *Agaricus bisporus*, *Guignardia mangiferae*, *Colletotrichum sp.*, *Trametes Ijubarsky*, and *Cladosporium cladosporioides* were used to synthesize silver nanoparticles that were evaluated for their potential to control phytopathogenic fungi (10, 28, 11, 26). Similarly, *Aspergillus fumigatus* and *Fusarium oxysporum* are used in the extracellular production of silver nanoparticles (3, 14).

CONCLUSION

With all of the Review literature, it can clearly and enthusiastically declare to have scopes for this research. It has provided account of silver nano particles potential as an anti-cancerous, anti-microbial, and antioxidant properties. *Cadaba fruticosa* (L.) Druce plant have great potential to cure multiple diseases. Fungus mediated nano material having great applications to cure and control disease, it will be help to design new drugs and control strategies against this disease.

ACKNOWLEDGMENT

She is thankful to the Principal Dr. R. K. Aher, New Arts, Commerce and Science College Parner. The author also thankful to Prof. R. N. Deshmukh and Department of Botany, New Arts, Commerce and Science College Parner.

CONFLICT OF INTEREST

Authors declare no conflict of interest.

FUNDING

These study are funded by Chhatrapati Shahu Maharaj Research, Training and Human Development Institute (SARTHI), Balchitravani, C T Survey Number 173, B/1, Gopal Ganesh Agarkar Road, Pune 411 004.

REFERENCES

1. Abdel Rahim, K., Mahmoud, S. Y., Ali, A. M., Almaary, K. S., Mustafa, A. E. Z. M.A., and Husseiny, S. M. (2017). Extracellular biosynthesis of silver nanoparticles using *Rhizopus stolonifer*. *Saudi J. Biol. Sci.* 24, 208–216.
2. Ahluwalia, V., Kumar, J., Sisodia, R., Shakil, N. A., and Walia, S. (2014). Green synthesis of silver nanoparticles by *Trichoderma harzianum* and their bioefficacy evaluation against *Staphylococcus aureus* and *Klebsiella pneumonia*. *Ind. Crops Prod.* 55, 202–206.
3. Ahmad, A., Senapati, S., Khan, M. I., Kumar, R., and Sastry, M. (2003). Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, *Thermomonospora* sp. *Langmuir*, 19(8), 3550-3553.
4. Ahmed, S., Ahmad, M., Swami, B. L., and Ikram, S. (2016). A review on plants extracts mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. *Journal of Advanced Research*, 7(1), 17–28.
5. Akhtar, M. S., Panwar, J., and Yun, Y.S. (2013). Biogenic synthesis of metallic nanoparticles by plant extracts. *ACS Sustainable Chemistry and Engineering*, 1(6), 591–602.
6. Ashrafi, S. J., Rastegar, M. F., Ashrafi, M., Yazdian, F., Pourrahim, R., and Suresh, A. K. (2013). Influence of external factors on the production and morphology of biogenic silver nanocrystallites. *J. Nanosci. Nanotechnol.* 13, 2295–2301.
7. Avizit M., Saha BP., Basu SP., Rupa Mazumder. (2005). Evaluation of Antipyretic potential of Lagerstroemia parviflora extract in rats. *Pharmaceutical Biology*, vol.43, No.1. 64-66.
8. Azmath, P., Baker, S., Rakshith, D., and Satish, S. (2016). Mycosynthesis of silver nanoparticles bearing antibacterial activity. *Saudi Pharm. J.* 24, 140–146.
9. Badmus, J. A., Oyemomi, S. A., Adedosu, O. T., Yekeen, T. A., Azeez, M. A., Adebayo, E. A., Lateef, A., Badeggi, U. M., Botha, S., Hussein, A. A., and others. (2020). Photo-assisted bio-fabrication of silver nanoparticles using *Annona muricata* leaf extract: exploring the antioxidant, anti-diabetic, antimicrobial, and cytotoxic activities. *Helijon*, 6(11), e05413.
10. Balaji, D. S., Basavaraja, S., Deshpande, R., Mahesh, D. B., Prabhakar, B. K., and Venkataraman, A. (2009). Extracellular biosynthesis of functionalized silver nanoparticles by strains of *Cladosporium cladosporioides* fungus. *Colloids and Surfaces B:Biointerfaces*, 68(1), 88-92.
11. Balakumaran, M. D., Ramachandran, R., and Kalaichelvan, P. T. (2015). Exploitation of endophytic fungus, *Guignardia mangiferae* for extracellular synthesis of silver nanoparticles and their in-vitro biological activities. *Microbiological Research*, 178, 9-17.
12. Ballio, A., Bossa, F., DiGiogio, P., Ferranti, P., Paci, M., Pucci, P., Scaloni, A., Segre, A. and Strobel, G. A. (1994). Structure of the pseudomycins, new lipopeptides produced by *Pseudomonas syringae* MSU 16H. *FEBS Lett.* 355:96–100.
13. Bhagwat W. Chavre. (2020). A Comprehensive Review on *Cadaba fruticosa* (L.) Druce. *Indian J. Applied and Pure Bio.* Vol. 35(1), 7-15.

14. Bhainsa, K. C., and D'Souza, S. F. (2006). Extracellular biosynthesis of silver nanoparticles using the fungus *Aspergillus fumigatus*. *Colloids and Surfaces B: Biointerfaces*, 47(2), 160-164.
15. Birla, S. S., Gaikwad, S. C., Gade, A. K., and Rai, M. K. (2013). Rapid synthesis of silver nanoparticles from *Fusarium oxysporum* by optimizing physicocultural conditions. *Sci World J*. 2013:796018
16. Chatterjee, S., Mahanty, S., Das, P., Chaudhuri, P., and Das, S. (2020). Biofabrication of iron oxide nanoparticles using manglicolous fungus *Aspergillus Niger* BSC-1 and removal of Cr (VI) from aqueous solution, *Chemical Engineering Journal*, vol. 385, Article no. 123790.
17. Chatterjee, T. K. (1993). Handbook of Laboratory Mice and Rats, 1st ed., *Chatterjee Publications*, Calcutta, 151.
18. Chattopadhyay, D., Arunachalam, G., Mandal A. B., Mandal S. C. (2002). Evaluation of antipyretic activity leaf extracts of *Mallotus peltatus* (Geist) Muell. Arg.var acuminatus; folk medicine, *Phytomedicine*, 9, 727-730.
19. Ciambelli, P., La Guardia, G., and Vitale, L. (2020). Nanotechnology for green materials and processes. In *Studies in Surface Science and Catalysis*, (179, pp. 97-116). *Elsevier*.
20. Dutta, D., Puzari, K.C., Gogoi, R., Dutta, P. (2014). Endophytes: Exploitation as a tool in plant protection. *Braz. Arch. Biol. Technol.* 57, 621-629.
21. Elamawi, R. M., Al-Harbi, R. E., and Hendi, A. A. (2018). Biosynthesis and characterization of silver nanoparticles using *Trichoderma longibrachiatum* and their effect on phytopathogenic fungi. *Egypt J Biol Pest Control* 28:28.
22. Elkaeed, E. B. (2022). Design, synthesis, docking, DFT, MD simulation studies of a new nicotinamide-based derivative: in vitro anticancer and VEGFR-2 inhibitory effects. *Molecules* 27 (14), 4606.
23. El-Sonbaty, S. M. (2013). Fungus-mediated synthesis of silver nanoparticles and evaluation of antitumor activity. *Cancer Nanotechnology*, 4(45), 73-79.
24. Evanoff Jr, D.D., Chumanov, G. (2005). Synthesis and optical properties of silver nanoparticles and arrays. *Chem. Phys. Chem.* 6, 1221-1231.
25. Fayaz, A. M., Balaji, K., Kalaichelvan, P. T., and Venkatesan, R. (2009). Fungal based synthesis of silver nanoparticles - an effect of temperature on the size of particles. *Colloids Surf. B Biointerfaces*. 74, 123-126.
26. Gudikandula, K., Vadapally, P., and Singara Charya, M. A. (2017). Biogenic synthesis of silver nanoparticles from white rot fungi: Their characterization and antibacterial studies. *Open Nano*, 2, 64-78.
27. Hamed, S., Ghaseminezhad, M., Shokrollahzadeh, S., and Shojaosadati, S. A. (2017). Controlled biosynthesis of silver nanoparticles using nitrate reductase enzyme induction of filamentous fungus and their antibacterial evaluation. *Artif. Cells Nanomed. Biotechnol.* 45, 1588-1596.
28. Hu, B., Wang, S. B., Wang, K., Zhang, M., Yu, S. H. (2008). Microwave assisted rapid facile "green" synthesis of uniform silver nanoparticles: self-assembly into multilayered films and their optical properties. *J. Phys. Chem.* 112, 11169-11174.
29. Husseiny, S. M., Salah, T. A., and Anter, H. A. (2015). Biosynthesis of size-controlled silver nanoparticles by *Fusarium oxysporum*, their antibacterial and antitumoral activities. *Beni Suef Univer. J. Basic Appl. Sci.* 4, 225-31
30. Ingale, S. A, Gaykar, B. M. (2021). Study on Structural and Pharmaceutical Constituents of Cyathocline purpurea - (Buch-Ham ex D. Don.) Kuntze "A Specified Medicinal Plant". *Bull. Env. Pharmacol. Life Sci.*, 10(12), 216-222.
31. Kalimuthu K. Y. S. Juliet, V. Chinnadurai, V. Ranjitha and A. Vanitha (2018). *Asian J. Pharmacy and Pharmacology*, 4 (6): 870-877.
32. Khalil, A.M.A., Hassan, S.E.-D., Alsharif, S.M., Eid, A.M., Ewais, E.E.-D., Azab, E., Gobouri, A.A., Elkelish, A. Fouda. (2021). A. Isolation and Characterization of Fungal Endophytes Isolated from Medicinal Plant Ephedra pachyclada as Plant Growth-Promoting. *Biomolecules*, 11, 140.
33. KM. Jerun Nisha., A. Vanitha, M., Lakxmi Kiruthika., P. Viswanathan, K. Kalimuthu., (2021). Biosynthesis of Silver and Copper Nanoparticles Using *Cadaba fruticosa* (L.) Druce and its Biological Applications. *Asian Pac. J. Health Sci*, 8 (3); 2350-0964.
34. Kuppusamy, P., Yusoff, M. M., Maniam, G. P., and Govindan, N. (2016). Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications-An updated report. *Saudi Pharmaceutical Journal*, 24(4), 473-484.
35. Lodha, D., Kumar, P. A., Shekhawat, N. S. (2015). A high-frequency in vitro multiplication, micromorphological studies and ex vitro rooting of *Cadaba fruticosa* (L.) Druce (Bahuguni): a multipurpose endangered medicinal shrub. *Physiology and Molecular Biology of Plants*. 21, 407-415.
36. Mahal, A. (2024). Molecular docking, drug-likeness and DFT study of some modified tetrahydrocurcumins as potential anticancer agents. *Saudi Pharm. J.* 32 (1), 101889.
37. Mahasneh, A. M. (2013). Bionanotechnology: The Novel Nanoparticles Based Approach for Disease Therapy. *Jordan Journal of Biological Sciences*, 6(4).
38. Mondal, A.K., Mondal, S., Samanta, S., Mallick, S. (2011). Synthesis of ecofriendly silver nanoparticles from plant latex used as an important taxonomic tool for phylogenetic interrelationship. *Adv. Biores.* 2(1), 122-133.
39. Monk, B. C., Goffeau, A. (2008). Outwitting Multidrug Resistance to Antifungals. *Science*, 321(5887), 367-369.
40. Muhsin, T. M., and Hachim, A. K. (2014). Mycosynthesis and characterization of silver nanoparticles and their activity against some human pathogenic bacteria. *World Journal of Microbiology and Biotechnology*, 30(7), 2081-2090.
41. Mukherjee, P., Ahmad, A., Mandal, D., Senapati, S., Sainkar, S. R., Khan, M. I., Parishcha, R., Ajaykumar, P. V., Alam, M., Kumar, R., and Sastry, M. (2001). Fungus-Mediated Synthesis of Silver Nanoparticles and Their Immobilization in the Mycelial Matrix: A Novel Biological Approach to Nanoparticle Synthesis. *Nano Letters*, 1(10), 515-519.
42. Nasrollahzadeh, M., Sajjadi, M., Sajadi, S. M., and Issaabadi, Z. (2019). Green nanotechnology. In *Interface science and technology* (Vol. 28, pp. 145-198). *Elsevier*.

43. Nayak, B. K., Nanda, A., and Prabhakar, V. (2018). Biogenic synthesis of silver nanoparticle from wasp nest soil fungus, *Penicillium italicum* and its analysis against multi drug resistance pathogens. *Biocatal. Agric. Biotechnol.* 16, 412–418.
44. Olaleye, M. T., Akinmoladun, A. C., Ogunboye, A. A., and Akindahunsi, A. A. (2010). Antioxidant activity and hepatoprotective property of leaf extracts of *Boerhaavia diffusa* Linn against acetaminophen-induced liver damage in rats. *Food and Chemical Toxicology*, 48(8–9), 2200–2205.
45. Panpatte D. G., Yogeshvari K. J., Harsha N. S., and Rajababu V. V. (2016). Nanoparticles: The Next Generation Technology for Sustainable Agriculture. © Springer India, D.P. Singh et al. (eds.), *Microbial Inoculants in Sustainable Agricultural Productivity*, 289–300.
46. Phanjom, P and Ahmed, G. (2017). Effect of different physicochemical conditions on the synthesis of silver nanoparticles using fungal cell filtrate of *Aspergillus oryzae* (MTCC No. 1846) and their antibacterial effects. *Adv. Nat. Sci. Nanosci. Nanotechnol.* 8, 1–13.
47. Qian, Y., Yu, H., He, D., Yang, H., Wang, W., Wan, X., et al. (2013). Biosynthesis of silver nanoparticles by the endophytic fungus *Epicoccum nigrum* and their activity against pathogenic fungi. *Bioprocess Biosyst. Eng.* 36, 1613–1619.
48. Rafique, M., Sadaf, I., Rafique, M. S., and Tahir, M. B. (2017). A review on green synthesis of silver nanoparticles and their applications. *Artificial Cells, Nanomedicine, and Biotechnology*, 45(7), 1272–1291.
49. Rai, M., Bonde, S., Golinska, P., Trzcińska-Wencel, J., Gade, A., AbdElsalam, KA, Shende, S., Gaikwad, S and Ingle, AP (2021). *Fusarium* as a novel fungus for the synthesis of nanoparticles: Mechanism and applications', *Journal of Fungi*, vol. 7, no. 2, Article no. 139.
50. Rajat V., Fatima B., Sukeesh, K. G., Krishnamurthy, S., Mondem. V. (2022). Neuroprotective effects of quercetin produced by an endophytic fungus *Nigrospora Oryzae* isolated from *Tinospora cordifolia*. *Journal of Applied Microbiology*, Vol, 132, Issue 1, 1 365–380.
51. Ramasamy M., G. Kumar, G.S. Banu, K.R., Balapala and A. J. Saad. (2011). *Natural Products – An Indian J.*, 7 (6): 310–314.
52. Rose, G. K., Soni, R., Rishi, P., and Soni, S. K. (2019). Optimization of the biological synthesis of silver nanoparticles using *Penicillium oxalicum* GRS-1 and their antimicrobial effects against common food-borne pathogens. *Green Process Synth.* 8, 144–156.
53. Roy, N., and Barik, A. (2010). Green synthesis of silver nanoparticles from the unexploited weed resources. *International Journal of Nanotechnology*, 4, 95.
54. Saboo. S. (2020). *Cadaba fruticosa* druce: medicinal plant. *J. Pharmacogn Phytochem.* 9 (1), 2331–2334.
55. Salem, S. S., and Fouda, A. (2021). Green synthesis of metallic nanoparticles and their prospective biotechnological applications: an overview. *Biological Trace Element Research*, 199(1), 344–370.
56. Sati, S. C., Kour, G., Bartwal, A. S., and Sati, M. D. (2020). Biosynthesis of Metal Nanoparticles from Leaves of *Ficus palmata* and Evaluation of Their Anti-inflammatory and Anti-diabetic Activities. *Biochemistry*, 59(33), 3019–3025.
57. Saxena, J., Sharma, P. K., Sharma, M. M., and Singh, A. (2016). Process optimization for green synthesis of silver nanoparticles by *Sclerotinia sclerotiorum* MTCC 8785 and evaluation of its antibacterial properties. *Springerplus* 5:861.
58. Shahzad, A., Saeed, H., Iqtedar, M., Hussain, S. Z., Kaleem, A., and Abdullah, R. (2019). Size-controlled production of silver nanoparticles by *Aspergillus fumigatus* BTCB10: likely antibacterial and cytotoxic effects. *J. Nanomater.*, 5168698.
59. Sinha, S. N., Paul, D., Halder, N., Sengupta, D., and Patra, S. K. (2015). Green synthesis of silver nanoparticles using fresh water green alga *Pithophora oedogonia* (Mont.) Wittrock and evaluation of their antibacterial activity. *Applied Nanoscience*, 5(6), 703–709.
60. Sundara V. D., P. Gopinath, S. D. Jaykar and P. Balakumaran. (2013). *Int. J. Pharma Research and Review*, 2 (11): 6–17.
61. Sunitha, V H., Devi, D Nirmala., Srinivas, C. (2013). Extracellular Enzymatic Activity of Endophytic Fungal Strains Isolated from Medicinal Plants. *World Journal of Agricultural Sciences*, 9(1), 1–9.
62. Tan, R. X., and Zou, W. X., (2001). Endophytes: a rich source of functional metabolites. *Nat. Prod. Rep.* 18: 448–459.
63. Tarannum, N., Divya, D., and Gautam, Y. K. (2019). Facile green synthesis and applications of silver nanoparticles: A state-of-the-art review. *The Royal Society of Chemistry Advances*, 9(60), 34926–34948.
64. Vigneshwaran, N., Ashtaputre, N.M., Varadarajan, P.V., Nachane, R.P., Paralikar, K.M., Balasubramanya, R.H. (2007). Biological synthesis of silver nanoparticles using the fungus *Aspergillus flavus*. *Mater. Lett.* 61, 1413–1418
65. Wang, Y., O'Connor, D., Shen, Z., Lo, I. M. C., Tsang, D. C. W., Pehkonen, S., Pu, S., and Hou, D. (2019). Green synthesis of nanoparticles for the remediation of contaminated waters and soils: Constituents, synthesizing methods, and influencing factors. *Journal of Cleaner Production*, 226, 540–549.
66. Xue, B., He, D., Gao, S., Wang, D., Yokoyama, K., and Wang, L. (2016). Biosynthesis of silver nanoparticles by the fungus *Arthroderra fulvum* and its antifungal activity against genera of *Candida*, *Aspergillus* and *Fusarium*. *Int. J. Nanomed.* 11, 1899–1906

CITATION OF THIS ARTICLE

P. S. Jadhav, A. A. Kamble, R. N. Deshmukh. A Review on Novel Endophytes Isolated from *Cadaba fruticosa* (L.) Druce. "Mycosynthesis of Silver Nanoparticles and their Biological Activities. Bull. Env. Pharmacol. Life Sci., Vol 15 [1] December 2025: 56-61