Bulletin of Environment, Pharmacology and Life Sciences Bull. Env. Pharmacol. Life Sci., Vol 12 [1]December 2022 : 194-201 ©2022 Academy for Environment and Life Sciences, India Online ISSN 2277-1808 Journal's URL:http://www.bepls.com CODEN: BEPLAD ORIGINAL ARTICLE

Seasonal Distribution of different Mycoflora from Proposed KOSI – MECHI River Interlinking Canal

Pankaj Kumar Aditya*, Shweta Kumari and R. K. Mandal Department of Botany, Patna University, Patna

Corresponding Author - adityacub@gmail.com

ABSTRACT

Fungal vegetation is greatly affected in enrouted region of proposed KOSI – MECHI river interlinking project in kharif season due to problem of water scarcity. A total of 14 different species were isolated from 20 different areas of Araria, Kishanganj, Purnea and Katihar district of Bihar. Total 1140 isolates of different species were obtained during May to April. Aspergillus, Rhizopus and Alternaria show the highest percentage of contribution. It was observed that, during October to January (In Rabi season) the fungal isolates were highest in number and during May to August (In Kharif Season) the fungal isolates were minimum in number. This observation conducted that; these areas were facing major issue of water scarcity in Kharif season.

Keywords: Kosi, Mechi, Eastern Kosi Main Canal (EKMC), Mycoflora

Received 12.07.2022

Revised 29.09.2022

Accepted 10.11.2022

INTRODUCTION

The river Kosi is an international river originating from Tibet flowing through Tibet, Nepal in Himalayan Mountains, and the lower portion through plains of North Bihar. To overcome the acute problem of shifting of course of Kosi River, heavy sediment load, flooding etc; the interlinking of KOSI-MECHI river has been proposed. It also helps to improve the agricultural production.

The Kosi project includes a barrage namely Hanuman Nagar across river Kosi located near Hanuman Nagar town close to Indo-Nepal border, canal headworks, Western Kosi Main Canal (WKMC) system in Nepal, Eastern Kosi Main Canal (EKMC) system in India. The present proposal is an extension of EKMC up to river Mechi, a tributary of river Mahananda. The canal – meant to connect two rivers in Bihar, will cross thirteen rivers on its path: Parman, Tehri, Lohandra, Bhalua, Bakra, Ghaghi, Pahara, Nona, Ratua, Kawal and Kankai. The aim of extension of EKMC up to Mechi river is mainly to provide irrigation benefits in new unirrigated area to the water scarce Mahananda basin command in the districts of Araria, Kishanganj, Purnea and Katihar during kharif season depending upon the pondage available in Hanuman Nagar barrage. The new culturable area covered by the link project for irrigation is 2,14,812 ha utilizing 1718 MCM of water.

Fungi are very successful inhabitants of soil, due to their high plasticity and their capacity to adopt various forms in response to adverse or unfavourable conditions [1]. The diversity and activity of fungi is regulated by various biotic (plant and other organism) and abiotic (soil, pH, moisture, salinity, structure and temperature) factors [2,3]. Fungi can be found in almost every environment and can be live in wide range of pH and temperature [4]. Fungi participate in nitrogen fixation, hormone production, biological control against root pathogen and protection against drought [5,6]. They also play an important role in stabilization of soil organic matter and decomposition of residues [7]. Therefore, the aim of this study is to find out the impact of irrigated and new unirrigated area on micro floral diversity.

MATERIAL AND METHODS Study Site and Locations

The study was conducted in Enrouted area via Araria, Kishanganj, Purnea and Katihar district of Bihar of KOSI-MECHI interlinking project. Five different sites of all four district were selected.

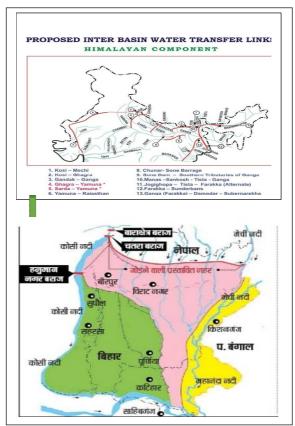


Figure 1:Study site and location.

Collection of Soil Samples

Ten soil samples from different crop fields of each site of proposed KOSI-MECHI enroute canal were collected (Table-1). Soil was collected from a depth of 15cm and are kept in sterilized polyethylene bags. Each sample was labelled properly by indicating the site of collection, date, and place of collection. The sampling was done during May 2021 to April 2022, and focused on Rabi season and Kharif season.

Determination of Physio-chemical Parameters of the Soil Samples

The physio-chemical parameters of the collected soil samples (Table2) such as, moisture content, organic carbon, nitrogen, pH, exchangeable potassium, calcium, potassium, calcium, magnesium and sodium were analyzed [8,9].

Isolation of Fungi

Serial dilution method was used to isolate the fungal colonies from soil samples [10]. For this, 25 grams of soil were added to 250 ml of sterile water in a flask and shake vigorously. Then transfer 10 ml of dilution with a sterile pipette to 90 ml of sterile water and repeat the process to obtain dilution up to 1:1000. Transfer 1 ml from last three dilutions to each of 3 sterile petri dishes containing PDA (Potato Dextrose Agar) media with chloramphenicol to inhibit the bacterial growth. Incubate at 26±2°C for 5 to 7 days. Transfer each colony of different isolated fungi on PDA media to obtain pure colony of different species of fungi.

Identification of Fungi

Fungal Colonies were identified on the basis of morphological and microscopic characters [11]. Colour and growth pattern of each species was used for morphological identification (Fig 2). For microscopic identification, slides where prepared from the colonies and examined under microscope (Table 3). The laboratory manual of Barnett and Hunter [12] was used for microscopic identification.

Statistical Analysis

Number of colonies per plate in 1 gm of soil was calculated to have the percent contribution of each isolate and the frequencies of occurrences of each individual isolate as well as the genus were calculated using the formula as expressed below:

Fraguency of accurrence -	Number of individual species isolated $\times 100$
Frequency of occurrence =	Total number of all species isolated

Where

CFU = Colony Forming Unit

% Contribution =
$$\frac{\text{Total No. of CFU an individual species}}{\text{Total no. of CFU of all species}} \times 100$$

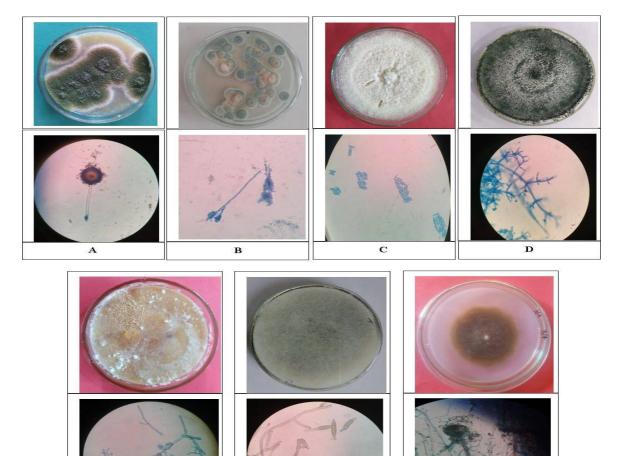
RESULT AND DISCUSSION

During the study period, 14 fungal species were isolated from different area of proposed interlinking Canal region of KOSI-MECHI river (Table4). The most frequent genera isolated were *Aspergillus* and *Rhizopus* followed by *Alternaria* and *Fusarium*. *Penicillium*, *Trichoderma* and *Neurospora* were observed in lesser frequency (Table5). Frequency wise distribution of flora in different month (Fig.3) revealed that in Kharif season (during May to July) minimum colony of fungal species were observed followed by Rabi season (Oct to Dec).

District	Sample Code	Nature of Field	Sampling Site	Location		Soil Type	
				Latitudes	Longitudes		
	Ar-1	Wheat	Mirganj	26.368151°	87.240640°	Sandy	
	Ar-2	Rice	Bhorha Ghat	26.306565°	87.420311°	Sandy loam	
Araria	Ar-3	Maize	Doria	26.289918°	87.433425°	Sandy clay loam	
	Ar-4	Rice	Dhowabari	26.363941°	87.468306°	Sandy loam	
	Ar-5	Black Gram	Bahadurganj	26.261639°	87.815485°	Sandy clay loam	
	Ka-1	Rice	Sarifnagar	25.517521°	87.565724°	Sandy loam	
	Ka-2	Maize	Barari	25.340783°	87.096916°	Sandy	
Katihar	Ka-3	Rice	Mansahi	25.474194°	87.588519°	Sandy loam	
	Ka-4	Wheat	Taiyabpur	25.714193°	87.807762°	Sandy	
	Ka-5	Potato	Bhaunagar	25.662043°	87.817172°	Sandy loam	
	Ki-1	Rice	Khoragachhi Miki	26.332153°	87.570802°	Sandy	
	Ki-2	Wheat	Pohara	26.401821°	87.525072°	Sandy	
Kishanganj	Ki-3	Maize	Rampur	26.372699°	87.663324°	Sandy loam	
	Ki-4	Jute	Kanchoribari	26.393127°	87.757947°	Sandy	
	Ki-5	Jute	Parbhata	26.352153°	87.530802°	Sandy loam	
	Pu-1	Rice	Suwara	25.796860°	87.511451°	Sandy loam	
	Pu-2	Jute	Ramnagar	25.769880°	87.481655°	Sandy clay loam	
Purnea	Pu-3	Wheat	Baisa	26.035056° 87.802604°		Sandy loam	
	Pu-4	Jute	Kadwa	25.695234°	87.753213°	Sandy clay loam	
	Pu-5	Rice	Amour	25.749954°	87.468445°	Sandy loam	

 Table 1: Soil samples collected from different locations of proposed KOSI – MECHI Enroute Canal.

This is due to the soil vegetation, water holding capacity, pH and nutrient medium of soil. In kharif season the nutrient depletion and dryness of soil reduce the fungal population (Fig.3). The species which have high tolerance capacity to different climatic condition were mainly shows their colonization in this season. Due to lack of water, there was less distribution of vegetation in enrouted area of proposed to KOSI-MECHI river interlinking Canal in kharif season. It affects the soil nutrient value as well as agricultural production because fungal diversity determines plant biodiversity and productivity [13].


Table 2: Physico-chemical properties of the soil collected from Canal area between May 2021 to April

2022. (Mean Value)

Citos Codo	II	Maisture (0/)	00(0/)		Ca (Cmal/Ka)	,	$V(C_{max})/V_{max}$	No (Cmol/Wa)
Sites Code	рН	Moisture (%)	OC (%)	N (%)	Ca (Cmol/Kg)	Mg (Cmol/Kg)	K (Cmol/Kg)	Na (Cmol/Kg)
Ar-1	7.4	1.0	0.32	0.06	1.25	0.60	0.46	0.43
Ar-2	7.5	1.0	0.56	0.07	1.35	0.60	0.56	0.48
Ar-3	8.3	1.5	1.08	0.10	1.05	1.33	0.87	0.74
Ar-4	7.2	2.0	1.24	0.11	1.52	1.53	1.45	0.34
Ar-5	6.9	2.1	0.22	0.04	1.22	0.53	0.45	0.43
Ka-1	8.4	1.5	1.18	0.11	1.15	1.23	0.81	0.70
Ka-2	7.3	1.1	0.22	0.06	1.23	0.70	0.49	0.78
Ka-3	7.8	1.9	1.08	0.12	1.04	1.13	0.77	0.64
Ka-4	6.8	1.7	1.28	0.10	1.05	1.06	0.67	0.84
Ka-5	7.4	1.6	1.10	0.13	1.24	1.44	0.37	0.77
Ki-1	8.6	1.5	1.18	0.10	1.05	1.27	0.37	0.94
Ki-2	6.9	1.1	0.52	0.04	1.52	1.53	1.45	0.34
Ki-3	7.1	2.1	0.22	0.14	1.22	0.58	0.49	0.43
Ki-4	7.3	2.1	0.44	0.03	1.33	1.65	0.88	0.74
Ki-5	6.9	2.1	0.22	0.04	1.22	0.53	0.45	0.43
Pu-1	7.3	1.0	0.31	0.05	1.24	0.62	0.47	0.46
Pu-2	7.5	2.0	0.65	0.21	1.48	1.23	1.43	0.76
Pu-3	6.8	1.4	0.41	0.10	1.25	0.62	0.46	0.43
Pu-4	6.4	1.1	0.52	0.14	1.52	1.53	0.85	0.98
Pu-5	8.3	1.4	1.08	0.10	1.05	1.27	0.81	0.70

	Table 5: Occurrence of Fungal species in Different allea of canal region								
SI. No.	Colony Texture	Microscopic Character	Species Identification						
01	Black and pale-yellow colour	Conidiophores are long, Smooth and hyaline; Biseriate and radial conidia; septate hyphae	Aspergillus niger						
02	Yellow-green Colsony	Long conidiophores; Biseriate; globose, Smooth	Aspergillus flavus						
03	Orange-Cream colony	Conidial head are columnar and uniseriate; short, smooth- walled conidiophore; globose conidia	Aspergillus fumigatus						
04	Yellow-white Colony	Conidia are smooth and oval; philades uniseriate; rough conidiophore	Aspergillus oryzae						
05	Light brown colony	Brown, erecti conidiophore; obclavate, smooth, branched, transverse and longitudinal septate conidia	Alternaria alternata						
06	Dark brown colony	Brown conidiophore; transverse septate branched obclavate conidia	Alternaria solani						
07	Pinkish white colony	Macroconidia septate, curved, irregular branched conidiophore	Fusarium oxysporum						
08	White colony	Irregular branched conidiophore; sickle shaped, septate conidia	Fusarium solani						
09	Green colony with 2-3 concentric ring	Branched conidiophore; flask shaped philades; green globose and smooth conidia	Trichoderma harzianum						
10	White green colony with 2 concentric rings	Highly branched, symmetrical conidiophore; dark green and ovoidal conidia; branched philades	Trichoderma asperellum						
11	White green colony with 1-2 concentric rings	Conidiophore are branched at 90° angle; single philades; globose and smooth conidia	Trichoderma viride						
12	Grey - green colony	Green, oval, smooth conidia; ampulli form philades; brush shaped conidiophore	Penicillium chrysogenum						
13	Grey fuzzy colony	Black round spore; branched mycelia	Rizopusstolonife						
14	Orange pink cottony colony	Axon like mycelia; oval shaped conidia	Neurospora crassa						

Table 3: Occurrence of Fungal species in Different area of canal region

 E
 F
 G

 Figure 2:Showing morphological and microscopic diagram of (A) Aspergillus, (B) Penicillin, (C)

 Fusarium, (D) Trichoderma, (E) Neurospora, (F) Alternaria, (G) Rhizopus.

Number of isolates of individual species																	
District	Site	Aspergillus				Altomania	rasartan	Euconium	Rhizopus		Trichoderma		Penicillium	Neurospora	To	ıtal	
		A. N.	A. fl	A. fu	A. ory	A. alt	A. sol.	F. o.	F. so	R. sto.	T. har.	T. asp	T. vir	P. chy.			
Araria	Ar-1	20	25	11	10	13	8	8	1	13	1	0	0	6	0	116	410
	Ar-2	1	17	8	8	1	3	1	0	7	0	1	4	0	0	51	
	Ar-3	12	28	4	1	8	2	2	0	12	2	0	0	2	0	73	
	Ar-4	17	16	3	19	2	1	7	0	10	0	2	0	0	1	78	
	Ar-5	19	23	12	2	6	0	10	2	17	0	0	1	0	0	92	
Katihar	Ka-1	7	12	0	4	0	11	6	0	1	0	0	0	3	0	44	250
	Ka-2	10	1	8	0	6	2	12	0	4	0	0	1	0	0	44	
	Ka-3	10	21	2	0	0	8	1	0	12	1	3	0	1	0	69	
	Ka-4	13	4	3	0	1	0	8	8	1	1	0	0	0	2	41	
	Ka-5	3	12	0	3	4	2	2	22	3	0	1	0	0	0	52	
Kishanganj	Ki-1	8	3	1	4	8	2	0	1	4	4	0	0	2	0	37	203
	Ki-2	6	5	0	1	2	0	2	0	12	0	2	1	0	0	31	
	Ki-3	12	7	0	1	3	0	0	2	7	0	0	2	0	0	34	
	Ki-4	7	8	1	1	12	1	0	0	21	0	0	0	4	0	55	
	Ki-5	8	10	0	2	6	1	6	0	11	0	1	0	0	1	46	
Purnea	Pu-1	22	8	8	1	4	13	11	0	10	1	0	1	10	0	89	277
	Pu-2	7	2	1	3	0	1	0	1	13	0	1	0	2	0	31	
	Pu-3	3	12	6	1	1	0	5	0	21	0	0	1	0	0	50	
	Pu-4	5	17	4	1	0	1	2	8	10	0	1	0	8	2	50	
	Pu-5	1	14	3	2	3	9	1	0	14	0	0	1	0	0	48	
		191	245	75	64	80	65	84	45	203	10	12	12	48	6	11	40

 Table 4: Total number of the different fungal species isolated from all sampling sites.

 Number of isolates of individual species

Table 5: Frequency of different fungal species isolated during May 2021 to April 2022.

Sl. No.	Identified fungi	Occurrence times	Frequency occurrence (%)				
	Aspergillus species	575	50.44				
1.	A. niger	191	16.75				
2.	A. flavus	245	21.49				
3.	A. fumigatus	75	06.58				
4.	A. oryzae	64	05.62				
	Alternaria species	145	12.72				
5.	Alternaria alternata	80	07.02				
6.	A. longipes	65	05.70				
	Fusarium species	129	11.32				
7.	F. oxysporum	84	07.37				
8.	F. solani	45	03.95				
	Rhizopus species	203	17.80				
9.	R. oryzae	203	17.80				
	Trichoderma species	34	02.98				
10.	T. harzianum	10	0.88				
11.	T. asperellum	12	01.05				
12.	T. viride	12	01.05				
	Penicillium species	48	04.21				
13.	P. oxalicum	48	04.21				
	Neurospora species	06	0.53				
14.	N. crassa	06	0.53				
	Total Isolates	1140	100				

Г

٦

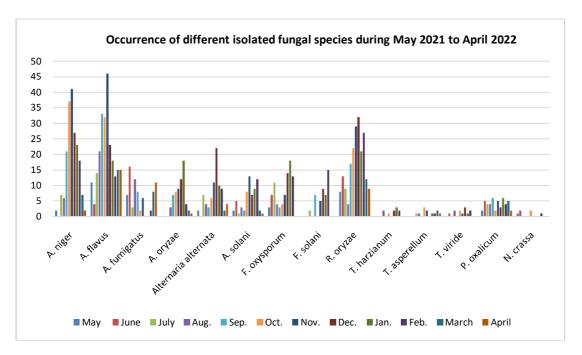


Figure 3: Showing number of different fungal species isolated during May 2021 to April 2022

CONCLUSION

This study revealed that, the agricultural land area of proposed interlinking canal of KOSI- MECHI river is facing major issue of humidity and soil nutrient quality in Kharif season. It decreases the amount of kharif crop production. To overcome this problem, adequate amount of water is needed in kharif season. Therefore, KOSI-MECHI interlinking project is a worthwhile initiative in the agricultural sector.

ACKNOWLEDGMENT

Authors are thankful to Department of Botany, Patna University, Patna for providing necessary research facilities.

CONFLICTS OF INTEREST

There is no conflict of interest

REFERENCES

- 1. Sun, J. M., Irzykowski, W., J.edryczka, M., and Han, F. X. (2005). Analysis of the genetic structure of Sclerotinia sclerotiorum (Lib.) de Bary populations from different regions and host plants by Random Amplified Polymorphic DNA markers. J. Integr. Plant Biol. 47, 385–395. doi: 10.1111/j.1744-7909.2005.00077.x
- 2. Lopez-Bucio, J., Pelagio-Flores, R., and Herrera-Estrell, A. (2015). Trichoderma as biostimulant: exploiting the multilevel properties of a plant beneficial fungus. Sci. Hortic. 196, 109–123. doi: 10.1016/j.scienta.2015.08.043.
- 3. Rouphael, Y., Franken, P., Schneider, C., Schwarz, D., Giovannetti, M., Agnolucci, M., et al. (2015). Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Sci. Hortic. 196, 91–108. doi: 10.1016/j.scienta.2015.09.002
- 4. Frac, M., Weber, J., Gryta, A., Dêbicka, M., Kocowicz, A., Jamroz, E., et al. (2017). Microbial functional diversity in podzol ectohumus horizons affected by alkaline fly ash in the vicinity of electric power plant. Geomicrobiol. J. 34, 579–586.
- 5. Jayne, B., and Quigley, M. (2014). Influence of arbuscular mycorrhiza on growth and reproductive response of plants under water deficit: a meta-analysis. Mycorrhiza 24, 109–119. doi: 10.1007/s00572-013-0515-x
- 6. El-Komy, M. H., Saleh, A. A., Eranthodi, A., and Molan, Y. Y. (2015). Characterization of novel Trichoderma asperellum isolates to select effective biocontrol agents against tomato Fusarium wilt. Plant Pathol. J. 31, 50–60. doi: 10.5423/PPJ.OA.09.2014.0087
- 7. Treseder, K. K., and Lennon, J. T. (2015). Fungal traits that drive ecosystem dynamics on land. Microbiol. Mol. Biol. Rev. 79, 243–262. doi: 10.1128/MMBR. 00001-15
- 8. Zare R, Gams W.(2008). A revision of the Verticillium fungicola species complex and its affinity with the genus Lecanicillium. Mycological Research.; 112(7):811-824.
- 9. Saravana kumar K, Kaviyarasan V.(2008). Diversity and distribution of soil Mycoflora of dry deciduous forest of Tamil Nadu, Southern India. Journal of Bioscience Research.;1(1):25-33.
- 10. Gilman JC. (1957)A manual of soil fungi. The Lowa State University Press, Ames,; 33, 212, 225, 228, 401.

- 11. Rohilla SK, Salar RK.(2012).Isolation and characterization of various fungal strains from agricultural soil contaminated with pesticides. Research Journal of Recent Sciences.;1(ISC-2011):297-303.
- 12. Barnett HL, Hunter BB. (1998). Illustrated genera of imperfect fungi. The American Phytopathological Society, St. Paul, Minnesota.
- Wagg, C., Bender, S. F., Widmer, F., and Van der Heijden, M. G. A. (2014). Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl. Acad. Sci. U.S.A. 111, 5266–5270. doi: 10.1073/ pnas.1320054111

CITATION OF THIS ARTICLE

P K Aditya, S Kumari and R. K. Mandal. Seasonal Distribution of different Mycoflora from Proposed KOSI – MECHI River Interlinking Canal. Bull. Env. Pharmacol. Life Sci., Vol 12[1] December 2022: 202-208.