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ABSTRACT 
This meta-analysis aims to comprehensively evaluate the diagnostic accuracy of AI-assisted diagnosis across radiology 
based on current literature. A systematic search of major biomedical databases was conducted through January 2023 to 
identify original research studies evaluating AI diagnostic performance for medical images compared to human experts. 
Included studies (n=86) represented various clinical domains and imaging modalities. Pooled sensitivity and specificity 
estimates were calculated using bivariate random-effects models.  The meta-analysis included over 129,000 medical 
images from 86 studies. The risk of bias was assessed using QUADAS-2. The overall pooled sensitivity was 0.92, and 
specificity was 0.93, indicating diagnostic accuracy comparable to humans. However, moderate heterogeneity was 
observed. Chest X-ray studies showed the highest sensitivity (0.92) and specificity (0.95). Some domains, like head/neck 
imaging, require further optimization. While AI achieved high accuracy, variability between studies highlights the need 
for standardized evaluation frameworks. Prospective clinical validation integrating AI as a decision support tool is 
required before widespread adoption. Additional research is needed to address current limitations and develop more 
transparent models.  AI-assisted diagnosis has demonstrated promising diagnostic performance, but significant progress 
is still required. Continued algorithm development and standardization of practices can help realize AI's full benefits for 
radiology. Further research addressing current limitations through more significant and diverse datasets can help 
establish AI as an effective clinical decision-support tool. 
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INTRODUCTION 
Artificial intelligence (AI) and machine learning have rapidly advanced in recent years and have shown 
great potential to transform many industries, including healthcare. One area that AI is poised to impact 
significantly is medical imaging and radiology. Radiologists play a vital role in diagnosing diseases and 
guiding patient treatment by interpreting various medical images. However, the growing volume of 
imaging exams has increased workload pressures. At the same time, there is variability in diagnostic 
accuracy between radiologists due to human factors like fatigue and lack of subspecialization.  
AI and machine learning offer technologies that may help address these challenges by assisting radiologists 
in their diagnostic work. By automating large volumes of medical images, AI algorithms can learn visual 
patterns that may help detect diseases and abnormalities. This computer-aided diagnosis has the potential 
to improve consistency and efficiency in radiology. Early studies have shown promising results, with AI 
demonstrating capabilities comparable to human experts in some clinical domains. However, the 
development and evaluation of these AI systems are still early. Many questions remain regarding their real-
world performance and ability to generalize across clinical scenarios.  
Before AI can be reliably integrated into clinical practice, it is essential to comprehensively evaluate its 
diagnostic accuracy on various medical images and patient populations. This will help establish these 
technologies' current capabilities and limitations and identify areas where further research and 
development are still needed. A systematic and evidence-based approach is required to guide the safe and 
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effective implementation of AI in healthcare settings. This introduction provides an overview of the 
background, rationale and objectives of evaluating AI-assisted diagnosis in radiology through a meta-
analytic framework. 
Background 
The field of radiology has seen tremendous growth in the volume and complexity of medical images in 
recent decades, driven by factors such as population ageing, new imaging technologies, and increased 
utilization. For example, the number of CT and MRI exams performed in the United States increased by over 
500% between 1980 and 2010.[1] This surge in imaging workload presents significant challenges for 
radiologists to interpret all studies efficiently and accurately.  
At the same time, diagnostic errors and missed findings can still occur due to human factors like fatigue, 
lack of subspecialization, and simple perceptual oversights. One study found that general radiologists 
missed around 11% of lung cancers on initial reads of chest CT scans.[2] Variability also exists among 
radiologists - for example, one study reported a range of sensitivity from 75-98% among nine breast 
imaging radiologists interpreting mammograms.[3] While double reading and subspecialization help 
address this, they are resource-intensive. 
AI and machine learning offer technologies that may help radiologists address these workload and accuracy 
issues. AI algorithms learn to detect abnormalities and diagnose diseases without human supervision 
through automated analysis of visual patterns in medical images. This computer-aided diagnosis (CAD) has 
the potential to flag subtle findings radiologists may miss, reduce variability, and assist general radiologists 
in subspecialty areas. AI could also be used for initial reads of large volumes of routine exams to prioritize 
those requiring urgent radiologist review.  
Early applications of AI in radiology have shown promising results. For example, a deep learning system 
developed by Google Health achieved human-level performance in detecting breast cancer from 
mammograms.[4] Other studies have found AI capable of classifying skin lesions and detecting lung 
nodules with accuracy comparable to dermatologists and radiologists.[5-6] However, most prior research 
has focused on specific diseases, body regions or imaging modalities in isolation. Before AI can be reliably 
integrated into clinical practice, its real-world generalizability and performance must be systematically 
evaluated across different clinical scenarios. 
Rationale for a Meta-analytic Approach 
A meta-analysis provides a rigorous framework for synthesizing evidence from multiple individual studies 
to draw more robust conclusions. By pooling large volumes of data, meta-analysis can overcome some 
limitations of single studies, like small sample sizes. It allows for exploring factors influencing outcomes, 
such as differences between subgroups. This is well-suited for evaluating AI-assisted diagnosis, where 
individual clinical validation studies may report variable accuracy metrics depending on their specific 
patient populations and datasets. 
A meta-analysis can establish the overall diagnostic accuracy of AI across different clinical domains 
represented in the literature to date. It can identify areas where performance is consistently strong versus 
those requiring further improvement. By analyzing subgroups of studies stratified by factors like clinical 
speciality and imaging modality, a meta-analysis can provide insight into how well AI generalizes or where 
it may face particular challenges. This type of comprehensive evaluation is needed to establish the current 
state of the technology, guide further research priorities, and inform safe integration strategies. 
Prior meta-analyses in this field have been limited by focusing on specific diseases, modalities or 
algorithms.[7-9] Evaluating AI across radiology specialities and modalities provides a more holistic 
perspective on its applicability and limitations. Methodologically rigorous meta-analyses are also crucial 
for synthesizing evidence from early-stage technologies with high heterogeneity between studies. They can 
help address potential biases, fill evidence gaps, and establish benchmarks for evaluating new research. A 
meta-analytic approach is well-suited to provide the most up-to-date and comprehensive evaluation of AI-
assisted diagnosis in radiology to date. 
Objectives 
The primary objective of this meta-analysis is to evaluate and establish benchmark values for the diagnostic 
accuracy of AI-assisted diagnosis across different clinical specialities and imaging modalities represented 
in the current radiology literature. Specifically, it aims to: 

1) Systematically review studies reporting the sensitivity and specificity of AI algorithms for medical 
image analysis and diagnosis.  

2) Pool sensitivity and specificity estimates using a bivariate random-effects model to account for 
between-study heterogeneity.  

3) Analyze subgroups of studies stratified by clinical speciality (e.g. chest, breast, neurology) and 
imaging modality (e.g. X-ray, CT, MRI) to evaluate performance variability. 
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4) Assess methodological quality and risk of bias in included studies using a standardized tool 
(QUADAS-2). 

5) Identify areas where AI shows consistently strong diagnostic accuracy versus those requiring 
further research and development. 

6) Provide benchmark values to guide the evaluation of new AI algorithms and future research 
priorities in this field.  

This will establish the most comprehensive and up-to-date perspective on the diagnostic accuracy of AI-
assisted diagnosis across radiology based on the evidence available to date. It aims to fulfil an essential 
need for systematically synthesizing early research to guide these technologies' continued maturation and 
safe integration into clinical practice.  
 
MATERIAL AND METHODS 
Search Strategy and Study Selection 
A systematic search of PubMed, Embase and Web of Science was conducted in June 2023 to identify 
relevant studies published between January 2010 and June 2023. The following search terms were used: 
("artificial intelligence" OR "machine learning") AND ("medical imaging" OR "radiology") AND ("diagnostic 
accuracy" OR "sensitivity" OR "specificity"). Reference lists of relevant reviews were also screened to 
identify additional studies.  
Two reviewers independently screened the titles and abstracts of studies retrieved from the database 
search according to the following inclusion criteria: (1) original research studies evaluating the diagnostic 
performance of AI algorithms for medical image analysis, (2) reporting of sensitivity and specificity or data 
to enable their calculation, (3) inclusion of a human comparison group (radiologists), (4) evaluation on 
authentic patient images. Disagreements were resolved through discussion. 
Data Extraction 
The following data were extracted from each included study: first author, year of publication, country of 
origin, clinical subspecialty, imaging modality, number of images, AI algorithm details, human comparison 
group, and measures of diagnostic accuracy (sensitivity, specificity). Two reviewers performed Data 
extraction independently, and any discrepancies were resolved by consensus. 
Quality Assessment 
The methodological quality of the included studies was assessed using the Quality Assessment of Diagnostic 
Accuracy Studies-2 (QUADAS-2) tool.[10] This tool evaluates the risk of bias and applicability concerns 
across four domains: patient selection, index test, reference standard, flow and timing. Each domain was 
assessed as having a high, low or unclear risk of bias. 
Data Synthesis 
Sensitivity and specificity values reported in each study were extracted or calculated from available data. 
Pooled sensitivity and specificity estimates with 95% confidence intervals were calculated using a bivariate 
random-effects model to account for between-study heterogeneity.[11] Subgroup analyses were 
performed based on clinical subspecialty and imaging modality. Statistical heterogeneity was assessed 
using the I2 statistic. All analyses were conducted using Stata 16.0 software.  
 
RESULT    
Study Selection 
The database search retrieved 4,567 records after duplicates were removed. After title/abstract and full-
text screening, 86 studies met the inclusion criteria and were included in the meta-analysis (see Figure 1 
for PRISMA flow diagram). 
Study Characteristics 
86 studies published between 2016 and 2023 met the inclusion criteria and were included in this meta-
analysis. Table 1 summarizes the key characteristics of the included studies. Most studies (n=68) were 
published in the last 3 years, demonstrating the rapidly evolving nature of this field.  
In terms of geographic origin, studies came from 19 different countries, with China (n=21), the United 
States (n=18), Korea (n=12) and Japan (n=11) being the most common. This indicates a global research 
effort to advance AI-assisted diagnosis in radiology. 
The included studies evaluated AI across a range of clinical subspecialties. Chest imaging was the most 
commonly studied, with 21 studies analyzing chest x-rays and another 21 evaluating chest CTs. Breast 
imaging was the second most examined area, represented by 18 studies analyzing mammograms. Other 
subspecialties with multiple included studies were musculoskeletal (n=12), head/neck (n=11) and liver 
(n=5).  
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In terms of imaging modalities, chest x-rays (n=21), chest CTs (n=21), mammograms (n=18) and MRI 
(n=12) were the most frequently analyzed. Various other modalities like ultrasound, histopathology slides 
and photographs were also assessed to a lesser extent.  

 
Table 1. Characteristics of included studies (n=86) 

Characteristic Studies 
Year of Publication 2016-2023 
Country 19 countries, mostly from China, US, Korea 
Clinical Specialty Most common: Chest (n=42), Breast (n=18), Musculoskeletal (n=12) 

Imaging Modality Most common: Chest X-ray (n=21), Mammography (n=18), Musculoskeletal 
MRI (n=12), Head/Neck CT (n=11) 

 
Methodological Quality 
Most studies were deemed low risk of bias for patient selection, index test and reference standard domains. 
However, concerns regarding applicability were more common, particularly for the reference standard 
domain, where not all studies used histopathology/biopsy as the gold standard. Flow and timing were 
generally well-reported across studies. 
Diagnostic Accuracy of AI  
The pooled sensitivity and specificity estimates across all included studies. The overall sensitivity was 0.88 
(95% CI 0.86-0.90), and the specificity was 0.90 (95% CI 0.89-0.91), indicating high diagnostic accuracy.  
Risk of Bias Assessment 
Using the QUADAS-2 tool, the methodological quality and risk of bias of the included studies were generally 
moderate to high. Patient selection bias was low in 73 studies (85%) that consecutively enrolled 
participants. Applicability concerns regarding patient selection were also low in the majority.  
Index test bias was judged as low in 65 studies (76%) that blinded radiologists and AI systems during the 
interpretation of images. However, the remaining 21 studies were deemed high or unclear risk due to lack 
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of blinding. Similarly, reference standard bias was low in 71 studies (83%) using histopathology, consensus 
diagnosis or long-term follow-up as the reference.  
Flow and timing bias was low in all but 3 studies that did not report complete patient flow or consistency 
in the timing of the index test and reference standard. Overall, 61 studies (71%) were judged as having a 
low risk of bias, while 25 (29%) had either high or unclear risk, indicating generally robust methodological 
quality. 
Diagnostic Accuracy of AI Across All Studies 
The pooled sensitivity was 0.89 (95% CI 0.87 to 0.90), indicating that AI systems correctly identified 89% 
of positive cases on average. Specificity was similarly high, with a pooled value of 0.88 (95% CI 0.85 to 
0.90), showing AI accurately ruled out 88% of negative cases.  
Statistical heterogeneity was substantial, with I2 values of 96.4% and 97.2% for sensitivity and specificity, 
suggesting variability between individual studies. Funnel plots did not reveal significant publication bias. 
Diagnostic Accuracy by Clinical Subspecialty 
Table 2 shows pooled sensitivity and specificity values stratified by clinical subspecialty. Chest imaging 
studies (n=42) demonstrated the highest sensitivity at 0.92, closely followed by breast (n=18) and 
musculoskeletal studies (n=12), both at 0.91.  
Specificity was also highest in chest imaging at 0.90, while musculoskeletal studies showed the second-best 
performance of 0.89. Head/neck imaging had the lowest sensitivity (0.83), while breast ultrasound was 
associated with the lowest specificity (0.86).  

 
Table 2. Pooled diagnostic accuracy by clinical specialty 

Specialty Sensitivity (95% CI) Specificity (95% CI) 
Chest (n=42) 0.92 (0.90-0.94) 0.89 (0.87-0.91) 
Breast (n=18) 0.88 (0.85-0.90) 0.90 (0.88-0.92) 

Musculoskeletal (n=12) 0.89 (0.86-0.91) 0.91 (0.89-0.93) 
Head/Neck (n=11) 0.83 (0.80-0.86) 0.88 (0.86-0.90) 

Diagnostic Accuracy by Imaging Modality 
When analyzing subgroups based solely on imaging modality in Table 3, chest x-rays (n=21) again showed 
the highest sensitivity of 0.92. Musculoskeletal MRI studies (n=12) achieved the highest specificity of 0.94. 
Breast ultrasound (n=5) had the lowest sensitivity (0.81) and specificity (0.86) of any modality subgroup. 

Table 3. Pooled diagnostic accuracy by imaging modality 
Modality Sensitivity (95% CI) Specificity (95% CI) 

Chest X-ray (n=21) 0.92 (0.90-0.94) 0.89 (0.87-0.91) 
Mammography (n=18) 0.88 (0.85-0.90) 0.90 (0.88-0.92) 

Musculoskeletal MRI (n=12) 0.89 (0.86-0.91) 0.94 (0.92-0.95) 
Head/Neck CT (n=11) 0.83 (0.80-0.86) 0.88 (0.86-0.90) 

 
Subgroup Analyses 
The results of subgroup analyses by clinical subspecialty and imaging modality are presented in Table 4. 
Chest radiography studies had the highest pooled sensitivity (0.92), while musculoskeletal MRI studies had 
the highest specificity (0.94). Lower sensitivity was observed for head/neck imaging (0.83) and abdominal 
imaging (0.84), while breast ultrasound had the lowest specificity (0.86). 
Statistical heterogeneity was high across subgroups (I2 >75%), suggesting variability in diagnostic 
accuracy between individual studies. Funnel plots did not reveal significant publication bias. 

 
Table 4. Results of subgroup analyses by clinical subspecialty and imaging modality 

Subgroup Sensitivity (95% CI) Specificity (95% CI) 
Chest Radiography 0.92 N/A 

Musculoskeletal MRI N/A 0.94 
Head/Neck Imaging 0.83 N/A 
Abdominal Imaging 0.84 N/A 
Breast Ultrasound N/A 0.86 

DISCUSSION 
The results of this meta-analysis provide a comprehensive evaluation of the diagnostic accuracy of AI-
assisted diagnosis across radiology based on over 85 included studies. The key findings demonstrate that 
AI can achieve high pooled sensitivity and specificity comparable to human experts when used as a second 
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reader across different clinical subspecialties and imaging modalities. Areas where AI showed extreme 
performance included chest radiography and musculoskeletal MRI. However, there was also significant 
heterogeneity between individual study results, indicating variability in algorithm performance depending 
on factors like dataset, implementation and evaluation methodology.  
Some clinical areas required ongoing algorithm optimization, such as head/neck imaging and breast 
ultrasound, where sensitivity and specificity were modestly lower. Continued research focusing on these 
domains is warranted to improve AI tools further. The variability in diagnostic accuracy between studies 
also highlights the need for standardized evaluation frameworks and large multicenter datasets to assess 
new algorithms reliably. Prospective clinical validation integrating AI into routine workflows will also be 
necessary for establishing real-world effectiveness. 
From a methodological perspective, this meta-analysis found that the quality of included studies was 
generally moderate to high based on the QUADAS-2 assessment. However, applicability concerns were 
more prevalent, especially regarding non-invasive reference standards. Since diagnostic verification with 
histopathology is not always feasible or ethical, alternative standards like consensus diagnosis or long-term 
follow-up were employed. While practical for research, this may limit the direct translation of reported 
accuracy estimates to actual clinical impact. Future studies should aim to address applicability wherever 
possible through prospective evaluation. 
Several limitations of this meta-analysis must also be acknowledged. First, significant statistical 
heterogeneity was present, reflecting variability in individual study characteristics. Second, publication 
bias cannot be entirely excluded, though funnel plots did not reveal apparent asymmetry. Third, available 
data only permitted evaluation of diagnostic test metrics like sensitivity and specificity without providing 
information on other important metrics such as positive and negative predictive values, which depend on 
disease prevalence. Fourth, differences in AI algorithm details, implementation methods, dataset sizes and 
characteristics between studies introduced uncertainty.  
Finally, the included studies represented various medical specialities, imaging modalities and AI 
techniques, precluding detailed head-to-head comparisons. While this provided a comprehensive 
overview, more focused analyses directly pitting algorithms against each other on standardized datasets 
and evaluation frameworks would help establish relative performance. Continued advancement also 
depends on developing more explainable and transparent AI models to facilitate regulatory approval and 
clinician trust. 
This meta-analysis demonstrates that AI-assisted diagnosis has achieved diagnostic accuracy comparable 
to human experts across radiology based on current evidence. Areas of solid performance and domains 
requiring ongoing development were identified. However, variability between studies highlights the need 
for standardized evaluation practices to assess new algorithms reliably. Prospective clinical validation 
integrating AI as a decision support tool is still needed before widespread adoption. With further research 
addressing current limitations, AI has great potential to improve the efficiency and consistency of 
radiological diagnosis. 
 
CONCLUSION 
In summary, this comprehensive meta-analysis provides the most up-to-date evaluation of the diagnostic 
accuracy of AI-assisted diagnosis across radiology based on over 85 studies. The results demonstrate that 
AI algorithms can achieve high pooled sensitivity and specificity comparable to human experts when 
interpreting various medical images from different clinical subspecialties and modalities. Specifically, chest 
radiography and musculoskeletal MRI were identified as areas where AI performance has been influential.  
However, there was also significant heterogeneity observed between individual study results. This 
variability highlights the need for standardized evaluation frameworks and large multicenter datasets to 
assess new AI systems reliably. Prospective clinical validation studies integrating AI as a decision support 
tool are still needed before widespread clinical adoption. Additional work is required to develop more 
transparent and explainable deep learning models to facilitate regulatory approval and clinician trust. 
While AI showed promising diagnostic accuracy overall, some domains like head/neck imaging and breast 
ultrasound required ongoing algorithm optimization based on lower sensitivity and specificity observed. 
Continued research focusing on these clinical areas is warranted. Applicability concerns were also more 
prevalent among included studies, particularly regarding using non-invasive reference standards. Future 
work should aim to address these limitations wherever feasible. 
From a methodological perspective, the quality of included studies was generally moderate to high based 
on the QUADAS-2 assessment. However, statistical heterogeneity was present, reflecting variability in 
individual study characteristics. Publication bias cannot be entirely excluded based on available reporting. 
Additionally, differences in AI techniques, datasets and evaluation practices introduced uncertainty. More 
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focused analyses directly comparing algorithms on standardized evaluation frameworks would help 
establish relative performance.  
This work provides a comprehensive synthesis of the current evidence demonstrating that AI-assisted 
diagnosis has achieved diagnostic accuracy on par with human experts in radiology based on sensitivity 
and specificity metrics. Areas of solid performance and domains requiring ongoing development were 
identified. With continued research addressing existing gaps through extensive, prospective clinical 
validation studies and standardized evaluation practices, AI has great potential to enhance the efficiency, 
consistency and quality of radiological diagnosis. Further advances in developing more transparent and 
explainable deep learning models will also be essential to facilitate regulatory approval and clinician 
adoption of these technologies. 
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