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ABSTRACT 

Neurodegeneration a condition with progressive loss of neurons that disrupts neuronal connectivity and signal 
transmission in brain. Extensive research has suggested a correlation of inflammation and neurodegeneration process. 
Inflammation a self defensive (biological) reaction which responds to tissue repairing, regeneration, elimination of 
injurious stimuli thus controlling progression of neurodegeneration. Brain infection or activation triggers innate or 
adaptive immunity causing activation of brain immune cells (B cells, T cells) and glial cells like astrocytes, microglia, 
macrophages releases inflammatory mediators mainly cytokines (TNF-α, IL-6, IL-1β) thus elevating progression of 
neuroinflammation. Cytokines are key hole causative agents that alter normal functioning of brain cells.As known, glial 
cells are the gate keeper cells of the CNS to prevent entry of foreign matter and infection in the brain. It has been widely 
studied and reported that the innate response exerted by the fighting cells is ‘neuroprotective’ while the chronic and 
prolonged immune response results in the toxicity to neurons leading to neurodegeneration and neuronal death. 
Therefore adequate response by the immune system of the brain is a strongly needed necessity. The pathways that are 
responsible for initiating the cascade of immune response is discussed in this review with a special emphasis on IL-2 and 
IL-6 as this could serve as a good target to antagonize neurodegeneration due to chronic neuroinflammation. 
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INTRODUCTION 
Brain is an immune privileged organ that controls functions of all organs in human body through 
neuronal connectivity and neuronal signal transmission [1].The neuronal circuits in CNS and its functions 
are disrupted in neurodegenerative diseases [2]. Inflammation, a self-defensive biological process [3] is 
thought to be a cause for progression of neurodegenerative disease, it functions to repair, regenerate, 
eliminate injurious stimuli and help in maintaining tissue integrity of the body [4]. According to Celsius 
observations [5] clinically four cardial signs that interpret inflammation are heat (color), redness 
(rumor), swelling (tumor), pain (dolor), loss of function (function laesa) at the site of injury [6].These 
cardial signs are innate immune responses seen in most of diseases but not in case of neurodegenerative 
diseases.  
Neuroinflammation is nothing but host defensive mechanism which exhibit protective role and has 
restorative potential to retain normal structure and functional integrity against infection and injury [7]. 
Inflammation in brain is caused due to activation of microglia and astrocytes in response to pathogenic 
trigger that leads to release of various factors like cytokines, chemokines, or growth factors that results in 
the form of complex cascade between different brain cells (microglia, astrocytes, neurons, endothelial 
cells) (8). In neurodegenerative diseases, neuroinflammation initially clears the infection, thereby, 
controlling the severity and progression of disease thus acting as double-edged sword (9). On one side 
neuroinflammation may be protective recovering of injured neurons, but on the other hand, it may induce 
or aggravates the neuroinflammation by worsening the brain conditions [10]. Chronic inflammation 
induces certain cytotoxic effects that increase the severity of neurodegenerative diseases [11]. Thus, it 
has become a leading disastrous cause for progression of neurodegenerative diseases like Alzheimer 
disease (AD), Parkinson’s disease (PD), Multiple sclerosis(MS) and Amyotrophic lateral sclerosis [12].It is 
also true that neuroinflammation is involved in neuropsychiatric diseases. In neurodegenerative 
disorders the glia cells are the first ones to initiates inflammatory response, characterized by loss of 
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neurons but this is not true for all neurodegenerative diseases [13].Some emerging evidence represented 
that inflammation is eminent pathological feature that is mainly characterized by activated microglia and 
T Lymphocytes infiltration at site of injury [4]. Though it was once believed that the Blood Brain Barrier 
(BBB) acts as preventive wall between immune cells and brain, the belief is not clearly proven. However, 
it is now clear that the permeability of BBB can be regulated in normal physiological state when 
compared to diseased state where it may be either repress or upregulated. The inflammatory reactions 
associated with brain are represented as either acute or chronic neurodegeneration. Thus, the term 
neuroinflammation is a coordinated response between microglia and other brain cells including 
astrocytes and peripheral immune cells infiltrating in central nervous system [14]. Neuroinflammation is 
an innate immune response which involves activation of glial cells present in brain and thatin turn 
increases the production of cytokines (i.e TNF-α, Interleukins) [15], chemokines, prostaglandins, 
complement cascade proteins and reactive oxygen species (ROS) that binds to the receptor based upon 
their pattern recognition receptor (PRR) depending on the pathogenic trigger [16].The occurrence of 
neuroinflammation is characterized by presence of reactive astrocytes and activated microglia in brain, 
but in certain neurodegenerative diseases it is due to damage of blood brain barrier infiltration of B and T 
cells and polymononuclear cells. 
Neurodegeneration a condition where neuronal structure and functions are altered, due to progressive 
loss of neurons [17] and often by interneural and extracellular accumulation of fibrillary materials 
[14].While the causes associated with neuronal degeneration is not yet clearly understood but the 
occurrence of neuronal degeneration increases with age mainly mid to adult age population [18]. Thus, 
activation of immune system i.e innate or adaptive response [19] and the cellular response by microglia, 
astrocytes, neurons, endothelial cells [20] actively contribute to progression of neurodegenerative 
diseases.   
 
ROLE OF INNATE AND ADAPTIVE IMMUNE RESPONSE IN CNS: 
Though brain serves as ‘immune privileged system’ it is clear that both innate and adaptive responses are 
triggered due to pathogenic attack, infection, brain injury and so on [21]. Innate immune system, a 
decisive first line defence acts to oppose and clear apoptotic cells, misfolded or aggregated proteins (22). 
In CNS, the immune activation is due to participation of resident immune cells involving microglia, 
astrocytes [23] which play a pivotal role in homeostasis of brain during development, adulthood and 
aging [24]. Innate immune response is initiated by recognition of pathogen associated molecular patterns 
(PAMPS) conserved structures expressed by infectious agents [25] or due to endogenous signals that 
recognizes the danger associated molecular patterns (DAMPS) that includes a surplus of different 
molecules like nucleic acids, heat-shock proteins, ATP, high mobility group box chromosomal protein 1 
(HMGB-1), fibrinogen and aggregated/misfolded proteinssuch as amyloid-beta (Ab), α-synuclein and 
microtubule associated protein-tau tend to appear due to stress or tissue damage [23]. 
Toll like receptors are upregulated in neurological disorders by altering the pattern of microglia, 
astrocytes, oligodendrocytes and neurons [26]. Activated TLRs promotes the production of 
proinflammatory cytokines stimulating environmental damage contributing to neuronal death [23]. For 
example, TLR2 and TLR4 in mice deficient model indicated that the reduced TLR levels promoted to 
progression of traumatic brain injury [22] whereas in AD microglia associated with neurons expressing 
Aβ plaques where TLR2 and TLR4 expression are involved in Aβ plaques [27,28].Thus TLR it seems to 
play beneficiary role in AD, where TLR aid to uptake aggregated proteins and clearing the debris in CNS 
but still it is unclear that cellular activation by whether to contribute to progression of Alzheimer Disease 
[29]. 
Microglial, astrocytes and endothelial cells act as antigen presenting cells, where as neurons themselves 
initiate immune activation process via secreting various complementary factors like chemokine’s, MMPs 
and DAMP molecules. On the other hand, T cells show active entry by creating immunosuppressive 
environment in CNS. For example, CD4+ T cells are present in substantial nigra in PD, MS [30] and TBI 
patients [31]. In some cases CD8+ T cells show a close relation with neurons leading to neuronal damage 
mediated through cytotoxic CD8+ T cells (32). Both B cells and T cells (CD4+ and CD8+) play an important 
role in neurodegeneration (33) and this implicates close relation of T cells expressing TNF-related 
apoptosis-inducing ligand (TRAIL) with spinal motor neurons in MS [33]. Some T cells respond by 
producing neurotrophic factors like Brain derived neurotrophic factor (BDNF) [34]. In several cases 
autoimmune responses by T cells not always leads to destruction of neurons but rather they show crucial 
involvement in repair and regeneration process [35].Therefore, immune response can be both beneficial 
and destructive depending on the multiple conditions that prevail. 
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Neuroinflammation leading to neurodegeneration: 
Neuroinflammation can be described as inflammation of the central nervous system (CNS), which is 
recognized as a prominent hallmark of many different pathological conditions [21]. CNS is distinguished 
as ‘immune privileged organ’ that forms a close relation between innate and adaptive immune response 
by controlling the responses of CNS with the peripheral cells. Some evidences suggests that a strong 
inflammatory response is exerted by systemic LPS [36] or viral infections [37] in the periphery result in 
the subsequent infiltration of leukocytes from the periphery to the CNS leading to neuroinflammation and 
neurodegeneration. An offensive response is first initiated by microglial activation that releases the 
proinflammatory mediators favoring the permeabilization through BBB. The infiltration of subsequent 
leukocytes including (T cells and B cells) into the CNS share same functional features with microglia [36] 
like Toll like receptors (TLR) activation by aggregated proteins or pathogen associated molecular pattern 
(PAMP) [38], the expression of major histocompatibility complex class II and the ability of T cells, CD4+ T 
cells to express antigen presenting site thus influencing functional phenotypic T cells [39], as well as 
microglial ability to distinguish the two phenotypic forms based on its functional capability as M1 
inflammatory and M2 anti-inflammatory phenotypes which may get influenced by inflammatory T cells 
and lymphocytes regulatory T cells [40]. However subsequent permeability through BBB increases the 
possibility of peripheral macrophages acquiring a relevant role that may result in neuroinflammation. In 
neurodegenerative diseased patients, ‘it is observed that the ratio of CD4+ and CD8+ T cells is altered 
suggesting that T cells undergo persistent antigenic challenge in neurodegenerative diseases. The altered 
ratio of CD4+/CD8+ T cells may contribute to harmful inflammatory reaction, recruitment of antibodies 
against harmful antigen present in brain, thus showing involvement of immune system in 
neurodegenerative diseases [23].Based on the consequences, acute neuroinflammation can be assumed 
as beneficiary to CNS that minimizes the injury by activating innate immune system [41,42]. 
Contradictorily on the other hand, Chronic inflammation is characterized by long lasting activation of 
microglia that releases inflammatory mediators leading to upregulate the oxidative and nitro stative 
stress thus prolonging the inflammatory process [43] resulting in long term inflammation [44,45] that 
may result to detrimental occurrence of several neurodegenerative diseases [46].  
The fate of microglia is influenced by invasion of epithelial cells of BBB, infiltration of T cells through CNS, 
astrocytes and neurons [47]. The glial are seen in abundant population in CNS showing active 
participation as an innate immune response, triggering a cascade during inflammation or infection. Other 
than microglia the astrocytes found to function in similar way as that of microglia play a crucial role in 
HIV-1 (48) a virus mediated neurodegeneration [49]. The neurodegenerative disease is majorly caused 
due to prolonged chronic inflammation and activated microglia altering the environment of surrounding 
brain cells found to play a crucial role in the pathophysiology of neurodegenerative diseases. For example, 
IL-1-positive activated microglia restrain themselves with amyloid β plaques and neurofibrillary tangles 
in AD or present in degenerative motor neuron regions in ALS [50] patients leading to phosphorylation of 
tau proteins [51]. Neuroinflammation may either be consequence or cause of chronic oxidative stress, a 
characteristic feature of all neurodegenerative diseases that causes genetic structural alteration, lipid and 
protein dissolution resulting in neurodegeneration. Microglial cells are the prime source for reactive 
oxygen species, nitrogen species, tumour necrosis factor- α [52] and glutamate with detrimental 
neurotoxic effects when released at high dose after microglial activation [52,53] stimulating the TLRs 
(54) to induce signals through aggregated proteins in patients suffering with neurodegenerative diseases 
like AD [55], PD [56], MS [57], ALS [58]. 
Cytokines involved in Brain injury 
Cytokines are diverse polypeptides(59)secreted by many cells, particularly those acting as mediators for 
inflammation, immune activation, regulation of cell proliferation and cell death (60)including interleukins 
(IL), interferons (IFN), tumor necrosis factors (TNF), chemokines and growth factors(61).Various 
alternative names are given like lymphokines (lymphocytes), monokines (monocytes), chemokines 
(chemotactic activity), interleukins (Leucocytes). The “chemotactic cytokines” are involved in leukocyte 
chemoattraction and trafficking of immune cells to the injury site(62). Cytokines interact with nearby 
cells either in autocrine or paracrine way (63) where it controls the development and normal functioning 
of both immune and nonimmune cells.The cytokines are released in the cellular environment through the 
blood stream to induce local and remote responses (8).They mainly act on the membrane receptors, to 
initiate activation of intracellular signals that leads to certain changes in the pattern of gene transcription 
as a cellular response of milieu.  
Inflammatory chemokines are predominantly synthesized by peripheral immune cells(Macrophages, 
Lymphocytes and Fibroblast) and also a diverse group of cells including Glial cells and neurons(64).The 
binding of chemokines to it’s specific receptor initiates the cascade of signaling that results in activation 
of various cellular functions likecell adhesion, survival, cytokine secretion, phagocytosis, cell proliferation, 
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cell death, apoptosis [65], However subsequent exogenous or endogenous damage may takeover the 
offensive attack of peripheral immune cells(e. g. Neutrophils and macrophages) and may give rise to the 
progression of neurodegeneration or retrieval of neuronal function [66]. However it is known that variety 
of cytokines are present in Cerebrospinal fluid with very low concentration, but their expression is 
increased in case of disease pathogenesis or brain cell injury  [64]. In CNS, a significant source of 
cytokines is peripheral blood cells that produces cytokines after injury or either due to infection or 
damage to Blood Brain Barrier (BBB) (67). Cytokines have been reported to influence numerous actions 
that mediate CNS and systemic control towards host defense and  also they directly affect the neurons 
and glial cell development, growth function, damage and repair(60).They show a strong involvement in 
neurodegeneration and neurotoxicity by changing the expression and effects of cytokines that leads to 
modifications of endogenous cytokines [68]. 
Interleukin-2 
Interleukin-2 (IL-2) has ability to stimulate the growth of  T-cells (69) which was identified in 1976 in the 
supernatant culture of phyto-hemaglutinin .(PHA) stimulated human blood lymphocytes (Ly-CM) 
[70].Later on in 1983, it was cloned as cDNA a human T-cell leukemia cell line [71] and corresponding 
gene mapped on human chromosome 4 [72].The First data obtained through series of experiments 
performed on Lymphocyte conditioned medium suggested that IL-2 may exert a mitogenic effects on T 
cells or receptors and this helped in distinguishing the biological functions exerted by T cell from other 
immune cells (73, 74).It promotes the clonal expression of T-cells that is essential for proliferation and 
survival of T cells and also in generating effector and memory T cells [75]. It is predominantly secreted by 
activated T cells [59].Also known as growth factor or activator of T- cells they  activate cytotoxic T 
lymphocyte (CTL), natural killer cells (NK) and stimulate development of lymphokine activated 
killer(LAK) cells (76) and downregulate B lymphocyte proliferation and immunoglobulin secretion. 
IL-2, a pleiotropic glycoprotein structured as four α-helix bundle [77] entangled with approximately 15 
kDa(78)consisting of 133 amino acids present on dendritic cells and extracellular matrix. It is synthesized 
in small amount by activated dendritic cells [79] and mast cells [80].IL-2 is involved in differentiation, 
immune response, homeostasis and maintaining regulatory T cells [81]. In addition, IL-2 also shows 
growth and effector functions on B and Natural Killer cells.It is mainly produced by CD4+ T helper (TH) 
cells in secondary lymphoid organs and, to some extent by CD8+T cells, natural killer (NK) cells and 
natural killer T (NKT) cells(77).   
IL-2 Receptor subtypes 
IL-2 that is predominately produced by antigen-activated T cell binds to the receptor depending  on its 
binding affinity on the receptor, it mainly consists of 3 subunits, IL-2Ra (CD25), IL-2Rb (CD122), and gc 
(CD132)(82), that are readily present on Treg cells and antigen-activated T lymphocytes. The IL-2 have 
high affinity towards trimeric IL-2 R receptor, due to it’s crystal structure that provides a molecular 
support model(83).The IL-2 is first captured by IL-2R due to its hydrophobic surface that is surrounded 
by polar periphery i.e. IL-2 – IL-2Rα. This binary binding shows certain conformational changes that 
promotes binding with IL-2β due to distinct polar interaction (IL-2-IL-2βR).Notably the extracellular 
domain of IL-2Rα does not interact with the binary complex but rather the binary complex appears in cis 
form. Further it forms ternary complex association IL-2Rα-IL-2-IL-2Rβ showing weak interaction with IL-
2 and on the other, it strongly with quaternary complex showing high affinity towards IL-2 (84). 
IL-2 signaling pathway: 
JAK/STAT pathway 
The IL-2 signaling is initiated through IL-2Rβ chain that composed of specific site on IL-2R. Like other 
cytokine family members [85], IL-R contains a reserved site for membrane proximal cytoplasmic tail 
known as Box 1 and Box 2, forming variable domain (V box). One of the cloning studies discovered that 
serine rich domain (S region) overlaps with Box 1 and Box 2 with high significant signaling [86]. Tyrosine 
kinase has been recognized [87] for its involvement in binding of JAK 1 and JAK 3 with Box 1 and Box 2 
(88) present on IL-2 β  that activates the IL-2 receptor [89]. JAK 1 binds to specific site on V domain and 
as well as Box 1 sand Box 2 whereas binding of JAK 3 overlaps on JAK 1 binding site [89]. In addition to 
JAK , Tyrosine Kinase associated with Syk is found to be associated in signaling [90]. Activation of JAK 
signals provides most of down streaming events. Mechanically JAK 1 and JAK 3 activation proceeds 
through phosphorylation of tyrosine residues present on kinase domain. Phosphorylated JAK increases 
certain catalytic activities that are necessary for JAK 1 and JAK 3 (91). The targets for JAK deactivation is 
the recruited molecules itself that are linked with receptor complex, leading to down stream of signals.                                                                                     
Activation of STAT: Activated JAK leads to phosphorylation of signal transducer and activation of 
transcription STAT-5A and STAT-5B associated closely with transcriptor factors that binds to 
phosphotyrosine and Shc domain [92]. Further phosphorylated STAT leads to recruitment of tyrosine on 
specific site of receptor through Shc domain. Thus phosphorylated STAT undergoes dimerization on 
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interaction with Shc-phosphotyrosine complex thus causing migration of dimer towards the nucleus of 
targeted gene [93]. In addition, STAT-5 recruits different Tyr 338, Tyr 392, Tyr 510 differing in the 
sequences of tyrosine residues. It has been postulated that Tyr 338 requires the adaptor protein for 
binding with Shc domain [94], thus Tyr 392, Tyr 510 lacks adaptor protein and fails to activate STAT-5. 
Alteration in C-terminal of Tyr 338 on IL-2Rβ distorts the structure thus interrupting the interaction with 
STAT-5. Alternatively, IL-2Rβ contains a negative regulatory domain, that inhibits the STAT-5 
phosphorylation in context to mutation [95]. It is clear that STAT-5 is crucial for IL-2 signaling [96] that is 
required for the development of natural killer cells and intraepithelial lineages which is explored by some 
genetic model studies [97]. 
PI3K pathway 
Activation of PI3K pathway occurs due to biochemical modifications of phospholipids. Particularly 
phosphatidylinositol 3-Kinase (PI3K), a lipid kinase catalyzes phosphorylation of phosphatidylinositol 
(PI) at D-3 OH- group, resulting in generation of intracellular messengers PI3-phosphate, PI 3,4-
biphosphate and PI 3,4,5-triphosphate [98]. PI3-K, a 110kDa (catalytic unit) of which 85 kDa (regulatory 
unit) causes IL-2 signaling thereby inducing the phosphorylation of p85 tyrosine residue allowing 
recruitment of PI3K on cell membrane. Some evident studies explored that recruitment of PI3K occurs 
through adaptor protein Shc that binds to Tyr 338 [99]. The implication of the pathway results in 
proliferation and anti apoptosis of cells [100]. PI3K modulates E2F, a transcription factor that monitors 
genes involved in cell cycle progression [101]. Mutant of p85 subunit a inhibitor of E2F factor that inhibits 
PI3K pathway. Additionally PI3K signaling through IL-2 R increases p70s6 kinase that phosphorylates 
40S ribosome of S6 subunit controlling translation of mRNA essential foe cell division [102]. 
Rafamycin an immunosuppressive drug majorly targets IL-2 dependent proliferation by forming 
inhibitory complex with FKBP (FK 506-binding protein) (103) regulator of  mTOR is protein. mTOR a 
homologue of PI3K , but its function still remains unclear with PI3K signaling cascade [104]. Another 
pathway of cell survival through AKT, a protein kinase B that modulates phosphorylation of Bad (Bcl-2 
family protein) [105,106] induces apoptosis promoting cell survival as shown in fig 1. Association of PI3K 
with adaptor protein promotes the down streaming pathways like IRS-1 (107), p120Cb1 and CrkL [108]. 
MAPK pathway 
The MAPK Pathway controls cell differentiation, proliferation and cell death (109). Several reports have 
suggested that after Jak/Stat cascade phosphorylation leads to activation of MAPK complex wherein 
Tyr338 (110,111) serves as a docking site for adaptor protein Shc (112).Tyr 338 sequence pattern is 
recognized by phosphotyrosine domain that is present on Shc (113,114). Shc interacts with receptor that 
leads to recruitment of adaptor protein Grb 2 thus exchange of nucleotide SOS factor occurs that is 
involving in Ras-Raf-MAPK pathway which further stimulates the upregulation of several genes for 
example f-cos. Although MAPK pathway is associated with growth signaling that is neither necessary nor 
sufficient for IL-2 proliferation. In-vivo study on mutant IL-2Rβ evidences that mutant IL-2Rβ fail to 
activate MAPK pathway even though it increased the proliferation of cultured cells (95). Alone activation 
of MAPK pathway is not sufficient for prolong sustainability of IL-2 dependent cells, thus additional 
signaling pathways are required (115). 
MAPK activation upregulates the apoptotic mediators Bcl-2 and Bcl-XLthat promotes cell survival 
(116,117,118). Thus induction of Bcl-2 gene through transcription factor Aiolos, that binds to bcl-2 
promoter site inducing transcription process (119). The functional MAPK activation not only drives IL-2 
dependent pathway but also controls Bcl-2 gene expression. Since in mutant IL-2R receptors in Tyr-338 is 
replaced by phenylalanine it induces bcl-2 mRNA in some cases acting as wild type receptor (94).Finally 
the Ras-Raf-MAPK complex regulates protein phosphatases 1α that inturn regulates proapoptotic 
mediator Bad (120). However Tyr 338 activates the MAPK but consequently it downregulates the other 
pathways related to proliferation and survival, but functional redundancy effects by these pathways are 
due to other signals generated by IL-2 R (98). 
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Fig 1 : IL-2 acting through different pathways thus promoting cell survival. 

 
INTERLEUKIN-6 
Interleukin-6,was identified as a factor produced by lymphocytes that act as stimulator for B cells to 
produce antibody(121). It is  a soluble mediator with multifunctional biological effects on inflammation, 
immune response, and hematopoiesis[122]. Earlier it was known by distinct names like thename B- cell 
stimulatory factor 2 (BSF-2)due to its ability to produce differentiation of activated B cells into antibody 
(Abs) producing  cells [123], Hepatocyte stimulating factor (HSF)due to its effects of acute phase protein 
synthesis on hepatocyte cells and was also known as Hybridoma growth factor(HGF) (124) due to its 
ability to cause growth of fusion cells  between plasma cells and myeloma cells. In 1986, when BSF-2 was 
successfully cloned as cDNA [121] where it was found that molecules with different names were found to 
be identical, resulted in single name ‘Interleukin-6’[125]. Along with B cell differentiation it also shows 
some effects on T cell growth and on many other cells it induces acute phase proteins release [126]. It was 
identified to be involved in tissue regeneration [127,128], inflammation [129] and pathogen defense 
(130). Human IL-6 is composed of 212 amino acids including 28 amino acid single peptide with gene 
located on chromosome 7p21.Although the size of IL-6 is 21- 26 kDa [122]. 
IL-6 modulates various functions like cell propagation, cell differentiation, apoptosis. Apart from it’s 
inflammatory actions, it also show effects on different systems including neural and endocrine systems, 
bone metabolism and skeletal muscles [131] and hence forth known to be a pleiotropic cytokine [132]. 
IL-6 and it’s receptor 
IL-6, proinflammatory cytokine (133) is arranged in 4- α helical couple bundle in antiparallel helices 
[134]. Based on its length of IL-6 it is categorized under long chain cytokines that includes growth 
hormone (GH), erythropoietin and G-CSF factor [135]. According to mutagenesis studies, it has been 
recognized that IL-6 shows 3 active sites that binds with the receptor. 
Binding of IL-6 occurs in two different types of glycoprotein receptor, together forming a common IL-6 
receptor. The protein receptor only differ in their molecular weight i.e. IL-6Rα or CD126 (80kDa protein) 
and second gp130 or CD130 (130kDa protein) belonging to type I membrane protein consisting of 
transmembrane domain and extracellular N- terminal domain (130). Gp 130 protein is most commonly 
expressed in liver, kidney, cardiac, muscles and skeletal muscles etc. The population of IL-6 Rα is mainly 
restricted to certain targeted cells that mainly includes Hepatic cells, leukocytes (monocytes, neutrophils, 
B and T cells) and also neural, bone and skeletal tissue [131]. The small intracellular part of IL-6Rα shows 
a minor signal transmission that is initiated by intracellular domain of gp130 that contributes to IL-6 
signals [136]. Like other receptors Gp 130 protein does not show any kinase activity rather it binds to 
intracellular part of JAK for signal transduction [137]. 
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Fig 2 : IL-6 receptor signaling 

 
Intracellular Signal transduction by IL-6: 
Jak Stat pathway 
Janus kinase/Signal transducer and activators of transcription (JAK/STAT) is a pathway involved in 
various pleiotropic complexes that induces multiple signals required for developmental regulation, 
growth control and homeostasis in humans (138). In mammals, JAK/STAT is the only signaling pathway 
that is activated by wide range of molecules (including cytokines and growth factors) [139]. Janus kinase, 
an intracellular tyrosine kinase with molecular mass of 120-140 kDa [140]. is composed of 4 (JAK1, JAK2, 
JAK3, Tyk2) members wherein JAK1, JAK2, Tyk2 are expressed mostly by all mammalian cells whereas 
Jak3 is expressed specifically by hematopoietic cells (141).STAT is comprised of seven different 
transcriptional factors i.e.STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B, STAT6 (142). Although the 
JAK/STAT expression in CNS is weaker as compared to other systems as these proteins are present only 
in several brain areas like hippocampus, cerebral cortex, cerebellum, hypothalamus [143]. 
The gp130 receptor lacks kinase activity but forms active complex with Janus kinase a cytoplasmic (non 
receptor) kinase by forming homodimer loop (144). Thus the gp 130 receptor forms a close association 
with JAK followed by its auto-activation (131).The activated JAK shows its actions in two ways first, it will 
lead to phosphorylation of  tyrosine residues present on intracellular domain of gp 130and second, 
binding of JAK molecules to STAT. STAT is the transcriptional factor that binds to phosphorylated 
tyrosine residues of gp 130 where the JAK induces phosphorylation of STAT followed by dimer formation 
that migrates towards the nucleus of target gene as shown in fig 3.  
Mitogen Activated Protein Kinase (MAPK) 
Homo dimerization of IL-6 receptor not only activates JAK/STAT pathway but also activates MAPK where 
SHP2 protein is involved (145). For MAPK activation, SHP2 a tyrosine phosphatase (65 kDa) is 
spontaneously expressed (140). SHP2 binds to gp 130 where phosphorylation occurs at Tyr759 residues 
by JAK1. When phosphorylated, SHP2 comes in contact with Grb2/SOS complex, binding of SOS to the 
receptor through Grp2 protein leads to Ras activation [146]. Activated Ras stimulates activation of Raf 
(Protein kinase). Phosphorylated Raf kinase activates MEK in MEK1 and MEK2 which on further 
phosphorylation leads to MAPK activation. The activated MAPK interacts with CREB leading to 
transcription, thereby controlling cell survival, cell proliferation as described in fig 3.   
 
PI3K PATHWAY 
IL-6 also activates PI3K cascade.The survival factors like BDNF (Brain Derived Neurotropic Factor) or 
IGF-1 (Insulin like Growth Factor- 1) binds to the tyrosine residue eliciting the PI3K activation to the 
vicinity of plasma membrane [147].PI3K modifies certain phospholipids leading to recruitment of AKT 
protein kinase to the plasma membrane [131]. The  catalytic subunits of PI3K generates phosphoinositide 
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phosphatase PIP2 and PIP3 at the internal surface of the plasma membrane leading to phosphorylation at 
Thr308 and Ser478 which in turn activates AKT[148]. Activated AKT stimulates the phosphorylation of 
target proteins like Caspase-9 [149], forehead transcription factor (FKHR) [150], GSK-3b protein [151] 
promoting cell proliferation and cell survival as shown in fig 3.  
 

 
Fig 3 : IL-6 acting through different pathways thus promoting cell proliferation, cell survival and 

apoptosis. 
 

Terminators of IL-6 Signal transduction  
Protein Tyrosine Phosphatases (PTPs) 
Once the IL-6 signal transmission is stimulated, it not only activates JAK/STAT but also causes the 
tyrosine phosphatase SHP2 activation through gp 130 receptor [140] and thus subsequent 
phosphorylation of every single molecule involved in signal transmission [131].The Protein tyrosine 
phosphatase SHP2 binds to tyrosine759 residue of gp130 intracellular domain as a signal of IL-6 signal 
transduction [152]. Tyrosine759 possess pleiotropic effects during transmission of IL-6 signals, 
substitution of tyrosine residue with phenylalanine reduces the binding of SHP2 on gp 130 receptor and 
subsequent phosphorylation [153] thereby stimulating IL-6 signals [154,155], thus SHP2 induces 
impairment of JAK/STAT cascade activation (156).On the other hand, mutation of tyrosine inhibits MAPK 
activation, though SHP2 act as adaptor protein for MAPK activation.  
Thus every single phosphorylated tyrosine residues acts as a substrate for SHP2. Some reported 
evidences suggests that binding of SHP2 with Jak1, Jak2 and Tyk2 induces phosphorylation [15]) and thus 
absence of the STAT3-SHP2 cascade reveals that STAT3 is direct substrate for SHP2 activation [158].Thus 
SHP2 dephosphorylate STAT1 along with Tyr701 at Ser residue [159]. 
Suppressor of Cytokine Signaling (SOCS) 
Though there are numerous terminating pathways recognized SOCS is also one of the mechanism 
involved in IL-6 signal transmission. SOCS are intracellular protein molecules [160] that can down 
regulate the JAK/STAT pathway by binding to catalytic site of JAK and further blocking the STAT protein 
activation (161). It is also known as cytokine inducible SH2 protein (CIS) or STAT induced STAT 
inhibitors (SSIs) including eight members (CIS, SOCS1-7).SOCS possess a common central SH2 domain, 40 
amino acid C-terminal domain known as SOCS box [162]. The expression of SOCS (CIS, SOCS1-3) is rapidly 
induced by IL-6 [163] and other cytokines. Thus SOCS inhibits the JAK/STAT pathway via showing a 
classic negative feedback mechanism 
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The mechanism of action varies according to the SOCS subunits. SOCS1 and SOCS3 the two most widely 
studied members of family found to show involvement in inhibition of gp 130signalling [164]. SOCS1 and 
SOCS 3 mainly affect IL-6 cytokine signaling via exhibiting similar functional ability by acting on JAK and 
thus impairing the phosphorylation of gp 130 receptor, JAK and STAT (165). SOCS 1 terminates IL-6 
signal transmission by binding to the active catalytic JH1 domain of JAK 2 inhibiting JH1 activity 
(166,167) on the other hand SOCS 3 not only binds to JAK 2 (168) but mainly binds to the phosphorylated 
tyrosine residue of activated gp 130 receptor [169] as described in fig 4. 
 

 
Fig 4 : IL-6 signal terminators inhibiting further signal transduction process. 

 
CONCLUSION 
The molecular pathways leading to immune responses in the brain are very essential to understand in 
detail in order to control exaggerated and prolonged inflammatory response and thereby prevent 
neurotoxicity and degeneration.Interleukin-2 and Interleukin-6 are the two important players of immune 
system that exert an immune response after a cascade of signal transduction. Therefore, understanding 
the mechanisms responsible for the release and action of IL-2 and IL-6 right from their transcription until 
their degradation would be beneficial in controlling the exaggerated immune response leading to 
inflammation of neurons and hence would be helpful in neuronal disorders that occur due to 
neuroinflammation. 
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