Bulletin of Environment, Pharmacology and Life Sciences Bull. Env. Pharmacol. Life Sci., Vol 9[12] November 2020 :114-119 ©2020 Academy for Environment and Life Sciences, India Online ISSN 2277-1808 Journal's URL:http://www.bepls.com CODEN: BEPLAD Global Impact Factor 0.876 Universal Impact Factor 0.9804 NAAS Rating 4.95

ORIGINAL ARTICLE

Formulation and Analysis of Floating Microspheres of Amethopterin

Raghav Mishra *

Institute of Pharmaceutical Research, GLA University, Mathura, U.P., India (281406) ***For Correspondence:** raghav.mishra92@gmail.com

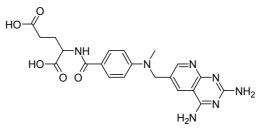
ABSTRACT

The aim of present investigation is to formulate and analyses the floating microspheres of amethopterin, which after oral administration could increase the gastric residence time and enhance the bioavailability of the drug by sustained release and minimize the dose dependent side effects as well as improves patient compliance. Floating microspheres of ethylcellulose, Polyvinyl alcohol and polyvinyl pyrrolidone-K90 were formulated by emulsification solvent evaporation technique. The various parameters of prepared microspheres were studied for SEM, flow properties, buoyancy, yield, percent drug loading, in vitro dissolution studies, stability in different pH and FTIR studies. Microspheres prepared with different concentrations of polymers were spherical in shape with smooth surface. The size of microspheres was in range of 256.02 μ m and 362.84 μ m. Good drug entrapment and buoyancy were observed for formulation F2. The in vitro drug release after 6h was found to be in range from 58.15% to 96.28%.

KEYWORDS: Floating microspheres, Amethopterin, Antineoplastic, Buoyancy.

Received 11.08.2020

Revised 09.10.2020


Accepted 28.10.2020

INTRODUCTION

Oral route of administration is the most convenient and widely used method of drug administration, and the development of stomach specific oral controlled- release delivery systems is a challenging job due to the variation of pH in different segments of gastrointestinal tract, the fluctuation in gastric residence time and the difficulty in localizing an oral delivery system in a selected region of the gastrointestinal tract. Rapid gastrointestinal transit can prevent the absorption of complete drug in the absorption zone and reduce the efficacy of administered dose since the majority of drugs are absorbed in stomach or upper part of small intestine.[1-2]

Polymers are generally employed in the development of floating microspheres. A number of different substances have been investigated for the preparation of floating microspheres; these materials includes polymers of natural origin or synthetic origin and also semisynthetic substances. Floating microspheres can be prepared by using both hydrophilic and hydrophobic polymers.

The concept of floating or porous microspheres can also be utilized to minimize the irritant effect of weakly acidic drugs on stomach by avoiding direct contact with the mucosa and providing a mean of getting low dosage for prolonged periods.[3-5]Amethopterin synonym Methotrexate (MTX) (Fig.1) is an antineoplastic agent whose mechanism is similar to alkylating agents. It is a highly toxic drug with a very low therapeutic index. It causes toxicities like stomatitis, gingivitis, glossitis, ulceration, and bleeding of the mucous membrane when given orally and hematological effects like leucopenia, thrombocytopenia, anemia, hemorrhage from various sites in single-dose intravenous administrations, and also some hepatic toxicities by administering as conventional dosage forms. Sustained and targeted delivery of amethopterin will reduce these toxicities considerably by maintaining a low and constant level of drug in the blood.[6-8]Therefore, floating microspheres have emerged as an efficient means of prolonging gastric residence time, targeting stomach mucosa, and enhancing the bioavailability. Floating microspheres remain buoyant due to lower density than the gastric and intestinal fluids. They are not subjected to 'all or nothing' gastric emptying nature of single unit system and releases the drug in a controlled fashion. The present investigation describes the formulation of the floating drug delivery system of amethopterin and its analysis.[9-11]

Fig.1: Amethopterin

MATERIAL AND METHODS

Amethopterin was obtained as a gift sample (Naprod Life Science Mumbai) whereasethyl cellulose, polyvinyl pyrrolidone K-90 (PVP K-90) and polyvinyl alcohol (PVA) were obtained from Merck India, Mumbai.Other chemicals used were of analytical grade.

General Method of preparation of Floating microspheres

Floating microspheres containing amethopterin were-prepared by emulsification solvent evaporation technique^[12] using EC, PVP-K90 and PVA polymers for microspheres.(Table1)

Amethopterin (100 mg) was weighed accurately and dissolved in 8 mL ethyl alcohol, followed by the addition of 2 mL isopropyl alcohol and 5 mL methylene dichloride. The polymer solution was slowly introduced into 100 mL of 1% polyvinyl alcohol aqueous solution while stirring at 250 rpm using a mechanical stirrer equipped with a 3-blade propeller. The solution was stirred for 10 minutes and microspheres were collected by filtration. The floating microspheres were collected by decantation, while the non-floating microspheres were discarded along with any polymer precipitates. The microspheres were dried in an oven at 50°C for 2 hours, weighed and then stored in a desiccator at room temperature for further use.

Ingredient	F1	F2	F3	F4	F5	F6
Drug	0.1	0.1	0.1	0.1	0.1	0.1
EC	0.5	1.0	1.5	0.5	1.0	1.0
PVP-K90	-	-	-	1.0	0.5	1.5
PVA	1.0	1.0	1.0	1.0	1.0	1.0

|--|

EC: Ethylcellulose; PVP K-90: Polyvinyl pyrrolidone K-90; PVA: Polyvinyl alcohol. **Evaluation of floating microspheres**

Surface Morphology: The prepared microspheres were fixed on a brass stub using double sided adhesive tape and then made electrically conductive by coating, in vacuum, with a thin layer of gold for 30 minutes and then examined by scanning electron microscope (SEM) operated at 10kV (JOEL-JXA840A electron probe micro-analyser, Japan). [13]

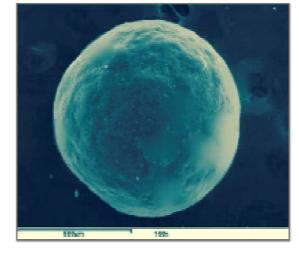


Fig. 2 (A) The cluster of microspheres

(B) A single microsphere

Flow Properties:Flow properties were determined in terms of Carr's index (CI) using the following formulae:

 $CI = \rho t - \rho b / \rho t$

where,

 ρ t = Tapped density

 $\boldsymbol{\rho}$ b = Bulk density

The angle of repose $[\theta]$ of the microsphere, which measures the resistance to flow, was determined by fixed funnel method, using the following equation:

 $\tan \theta = h/r$

where,

h = height of the pile

r = radius of the cone formed after making the microspheres flow through glass funnel from a fixed height. $^{\left[14\right] }$

The particle size of floating microspheres was performed with the help of optical microscope for randomly selected sample for all formulations.**(Table 2)**

Table 2:Flow	Properties	of floating	microspheres	
rubic an ion	roperees	ormouting	mici obpilei eo	

Formulation code	Angle of Repose $[\theta]$	Carr's Index [%]	AverageParticle size[µm]
F1	28.35±0.670	18.32±0.364	342.32±3.240
F2	24.64±0.502	15.25±0.342	362.84±2.452
F3	23.54±0.341	12.54±0.322	356.42±0.2465
F4	21.65±0.422	17.53±0.232	260.56±1.8602
F5	24.52±0.438	13.66±0.522	256.02±2.5446
F6	22.61±0.246	12.42±0.426	276.24±2.6773
1 11 0	1 1	a >	

Results are shown as Mean±Standard Deviation, (n=3)

Buoyancy test for microspheres:In triplicates, microspheres (100mg) were dispersed in solution composed of HCl (300 mL, pH 1.2 at 37° C) containing Tween 20 (0.02% w/v) to simulate gastric conditions.^[15-16]

The use of 0.02% Tween 20 was to account for the wetting effect of the natural surface-active agents, such as phospholipids in the gastrointestinal tract (GIT). $^{[17]}$

The mixture was stirred on magnetic stirrer at 100 rpm and 37±0.5°C. After 12hours, the floating particles were separated by filtration. The sinking particles were separated by filtration. Both particle types were weighed after drying at 40°C overnight. The buoyancy was determined by the weight ratio of the floating particles to the sum of floating and sinking particles. Percent buoyancy of formulations is shown inTable3.

Buoyancy(%). =
$$\underline{Q_f} \times 100$$

 $Q_f + Q_s$

Where,

 Q_f = Weight of floating microspheres

 Q_s = Weight of settled microspheres

1. Yield of Microspheres: The prepared microspheres were collected and weighed. The actual weight of obtained microspheres divided by the total amount of all drug and polymers solid material that was used for the preparation of all the microspheres [18]. Yield of microspheres is shown in Table3.

Yield (%) = $\frac{\text{Actual weight of the product}}{100} \times 100$

Total weight of the excipients and drug

Percent Drug Loading: Amethopterin content in the floating microspheres was estimated by a UV-Visible Spectrophotometer (Lambda 25, Perkin Elmer,US) method based on the measurement of absorbance at 303 nm in distilled water.^[19]

Microspheres equivalent to 100 mg were weighed and added in 100 ml of distilled water. The volumetric flask was stirred continuously for 24 hours on a magnetic stirrer. At the end of 24 h sample was withdrawn, diluted suitably and measured spectrophotometrically at 303 nm for drug content. Quantitative estimation of amethopterin was calculated by using equation obtained by Linear regression analysis of calibration curve in distilled water. The drug loading in microspheres was estimated using the formula:

Drug Loading (L) = $(Q_m / W_m) \times 100$

Where,

W_m is the weight of microspheres

 Q_m is the quantity of drug present in W_m of microspheres. ^[20]

Percent drug loading of various formulations is shown in the Table3.

In vitro dissolution studies: *In vitro* dissolution studies were performed using USP XXIII, Type-II (paddle) dissolution apparatus. The accurately weighed sample (50 mg) of formulations from F1 to F6 were dropped individually into 500 mL of phosphate buffer (pH 7.2) maintained at a temperature of $37\pm0.5^{\circ}$ Cand stirred at a speed of 50 rpm. At different time intervals, 1mL aliquot of the sample was withdrawn and the volume was replaced with an equivalent amount of buffered dissolution medium kept at 37° C. The collected samples were filtered and diluted with 9mL of phosphate buffer and analyzed at λ_{max} 303nm using a UV- Visible spectrophotometer (Lambda 25, Perkin Elmer,US) against the buffer taken as blank.(Fig.3)

Percent cumulative drug release from floating microspheres was calculated using Beer - Lambert's Equation. The drug release was calculated using various models and shown in Table3.^[21]

Table Sikelease parameters of moating microspheres				
Formulation code	Drug release after 6 h	% Drug loading	% Buoyancy	%Yield
F1	71.81% ±1.28	84.36±0.36	96.28±1.48	78.96±2.64
F2	92.71% ±2.36	58.84±0.82	94.36±1.86	95.38±0.38
F3	80.32% ±1.10	53.92±1.46	90.62±1.54	82.56±1.64
F4	68.22% ±1.46	95.36±2.36	60.26±2.62	70.48±1.74
F5	67.57% ±1.48	42.62±1.68	54.56±2.84	76.32±1.38
F6	58.15% ±1.02	76.38±1.72	68.38±1.36	82.93±1.76

Table 3:Release parameters of floating microspheres

Results are shown as Mean±Standard Deviation, (n=3).

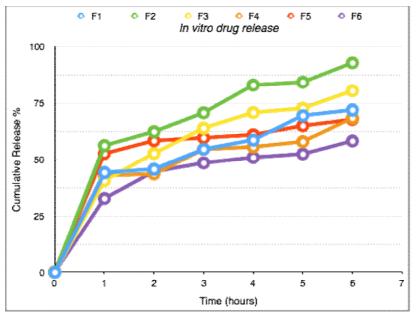


Fig.3: The *in vitro* drug release profile.

Stability of microsphere at different gastric pH:Floating microspheres are low density systems that have sufficient buoyancy to float over gastric contents and remain in stomach for prolonged period where they are exposed to different pH and different enzymatic conditions which can influence their physiochemical properties and drug release behaviour and can alter their physiochemical properties and drug release behaviour and can alter their stability characteristics. To test this hypothesis, drug loaded microspheres were subjected to different pH media where they encountered different ionic strengths and enzymatic conditions and the change in their properties was elucidated by counter checking their particle size. The pH dependent stability studies were carried out in following media:

- **a)** pH 1.1: 12 mL HCl (32%) with 1188 mL H₂O.
- **b)** pH 3.5: 150 mL solution (10.5g citric acid+100mL NaOH of 1M + 395.5 mL H₂O) with 100mL HCl.
- c) Simulated Gastric Fluid (SGF): 0.2% NaCl, Pepsin 0.7% HCl with pH 1.2.

10 mL of simulated fluid were added to 10mg of microspheres. The samples were analyzed after a period of 12hours in each of the above media. The above time intervals were selected for the study based on expected formulation residence time in stomach. Particle size was determined on the preset time periods.^[22] The results are recorded in Table4.

Table no.04			
Medium	Initial Size	Final Size	
pH1.1	256.02±2.5446	258.12±2.5446	
pH3.5	256.02±2.5446	260.42±2.5446	
SGF	256.02±2.5446	258.68±2.5446	

Table 4:Stability Studies of floating microspheres

Results are shown as Mean±Standard Deviation, (n=3).

IR Spectroscopic Studies: Drug-Polymer interaction was studied by FT-IR spectroscopy(Shimadzu Affinity I, FT-IR spectrophotometer). Samples were prepared by triturating 10 % of the drug or microspheres with 95% of KBr in glass pestle-mortar. The IR spectra of the drug and the microspheres were recorded, the identical peaks of the drug and drug with polymers concluded that neither the polymer nor the method of preparation has any significant effect on the drug stability.^[23-24]

RESULTS AND DISCUSSION

The floating microspheres of amethopterin were prepared by emulsion solvent evaporation method using ethyl cellulose, polyvinyl pyrrolidone and polyvinyl alcohol. The prepared floating microspheres were evaluated for different physicochemical tests such as particle size, true density, flow properties, drug content, *in vitro* float ability and *in vitro* drug release studies. Scanning electron microscopy showed that F1,F2,F4, F5, F6 formulation produced spherical microspheres compared to F3. The scanning electron microscopy confirmed the hollow nature of microspheres with pores on the surface of floating microspheres, which imparted floating properties to the prepared floating microspheres.

To estimate flow properties of prepared floating microspheres, micromeritic properties like particle size and true density were determined. The densities of floating microspheres were found to be less then density of gastric fluid, therefore tended to float over gastric fluid. So, the prepared microspheres combine the advantages of multiple unit systems and good floating properties. However, like all floating systems their efficacy is dependent on the presence of enough liquid in the stomach, requiring frequent drinking of water.

Particle size analysis of different formulation was done by optical microscopy. The average particle size for microspheres was in the range between 256.02 μ m and 362.84 μ m. The average particle size of microspheres was found to be increasing with the increase in concentration of polymer.

Drug content in F1,F2,F3,F4,F5 and F6 formulation were estimated by UV spectrophotometric method. Percent loading efficiency were found in the range of 42.62% to 95.36%. Formulation F4containing ethyl cellulose (0.5%) and polyvinyl pyrrolidone (1%) showed maximum loading of drug upto 95.36%. The rank order of percent loading was found to be as followed F4>F1>F6>F2>F3>F5.*In vitro* drug release studies of all the formulations were performed in phosphate buffer of pH 7.2 at 303 nm.

Significant difference was observed in the release pattern of amethopterin floating microspheres EC, PVA and PVP. It was found that the drug release from the formulations were distinguishably different for the different polymers used in the formulations. The rank order of drug release after 6 hours was found to be 92.71, 80.32, 71.81, 68.22, 67.57, 58.15 percent of formulation F2, F3, F1, F4, F5, F6 respectively. Formulation F2 containing ethyl cellulose (1%) showed the maximum release after 6 hours. Stability studies of microspheres at pH 1.1, 3.5 and SGF were conducted and found to be stable. FT-IR studies showed that there is no interaction between the drug and polymers.

CONCLUSION

The results of all the physiochemical tests of all formulations were found to be satisfactory. *In vitro* float ability studies revealed that most of the microspheres (54.56 %to 96.28 %) were floatable. The *in vitro* drug release was found to be in range of 58.15 % to 92.71 % at the end of 6 hours. It is concluded that these floating microspheres can be selected for the development of gastro retentive drug delivery system of amethopterin for potential therapeutic use.

ACKNOWLEDGEMENT

Author acknowledge Bharat Gupta for conducting studies. Highly thankful for GLA University, Mathura for encouragement and providing necessary facilities.

REFERENCES

- 1. Mishra, R. & Mishra, A. (2020). An Overview on Floating Microsphere. Int. J. Pharm. Res., 12(4): 377-386
- 2. Prakash, S., Bhandari, A., Mishra, R. & Sharma, P. K. (2015). Development and optimization of floating microspheres ofgliclazide. Int. J. Pharm. Sci. Res., 6(5): 807-817

- 3. Bulgarelli, E., Forni.&Bernabei, M.T. (2000). Effect of matrix composition and process conditions oncasein-gelatin beads floating properties. Int. J. Pharm., 63(3):235-259.
- 4. Davoudi, E. T., Noordin, N.I., Kadivar, A., Kamakidehghan, B., Farm, A.S.&Javar, H.A. (2013). Preparation and characterization of gastric floating dosage form of capecitabine. Biomed. Res. Int. doi:10.1115/2013/495319.
- 5. Methotrexate. AHFS Drug information, American Society of health system pharmacists American Hospital Formulary Service (2003), 45:1078-1085.
- 6. Brunton, L.L., Chabner, B.A.&Knollmann. B.C. (2011). Antineoplastic agents: Goodman and Gilman's.The pharmacological basis of therapeutics. Mc Graw Hill. New York pp. 1243-1247.
- 7. Singh, B.N.&Kim, K.H. (2000). Floating drug delivery systems: an approach to oral controlled drugdelivery via gastric retention. J. Control Release., 63(3):235-259.
- 8. Garg, R.& Gupta, G. (2008). Progress in controlled gastro retentive delivery systems. J. Pharm. Res.,7(3):1055-1066.
- 9. Chen, J.&Park, K. (2000). Synthesis of fast-swelling, super porous sucrose hydrogels. Carbohyd. Polym.,41(3): 259-268.
- 10. Shishu, Gupta, N.&Agarwal, N. (2007). Stomach specific drug delivery of 5-FU using floating alginate beads. AAPS Pharm. Sci. Tech., 8(2): E143-E149.
- 11. Rathor, S.&Ram, A. (2011). Porous microsphere of 5-FU. A tool for site specific drug delivery in gastri ccancer. Int. J. Current Pharm. Res., 3(1):38-42.
- 12. Soppimath, K.S., Kulkarni, A.R.&Aminabhavi, T. M. (2001).Development of hollow microspheres asfloating controlled release system for cardiovascular drugs. Drug Dev. Ind. Pharm., 27(6):507-515.
- Jain, S.K., Awasthi, A.M., Jain, N.K.&Agarwal, G.P. (2005). Calcium silicate-based microspheres of repaglinide for gastro-retentive floating drug delivery: preparation and *in-vitro* characterization. J.Control Release., 107(2):300-309.
- 14. Kale, R.D.&Tayade, P.T. (2007). A multiple unit floating drug delivery system of piroxicam using eudragit polymer. Int. J. Pharm. Sci., 69(1):120-123.
- 15. Patel, K., Jain, P.K., Baghel, R., Tagde, P.&Patil, A. (2011). Preparation and *in vitro* evaluation of amicro balloon delivery system for domperidone. Pharm. Lett., 3:131-141.
- 16. Raveendra, M., Narayana, K.L., Reddy, C.S., Suresh, V. (2012). Formulation and *in vitro* evaluation of floating microspheres of timolol maleate. J. Pharm. Chem. Biol. Sci., 3: 936-946.
- 17. Jain, S.K.&Gupta, A. (2009). Development of glucose 43/01 beads of metformin hydrochloride for floating delivery. AAPS Pharm Sci Tech., 10: 1128-1136.
- 18. Patel, A., Ray, S.&Thakur, R.S. (2006). *In vitro* evaluation and optimization of controlled release floating drug delivery system of metformin hydrochloride. DARU., 14(2): 57-64.
- 19. Semalty, A.&Semalty, M. (2007). Preparation and characterisation of mucoadhesive microspheres of ciprofloxacin hydrochloride. Indian Drugs., 44: 368-372.
- 20. Semalty, M.&Semalty, A. (2008). Gastro-retentive floating microspheres of diltiazem hydrochloride. Pharma Buzz., 3(12): 24-28.
- 21. Patel, J.K., Patel, R.P.&Patel, M.P. (2005). Formulation and evaluation of mucoadhesive glipizide microspheres. AAPS Pharm Sci Tech., 6(1):EE49-EE55.
- 22. Kalaria, D.R., Sharma, G., Beniwal, V.&Ravikumar, M.N.V. (2009). Design of biodegradabl enanoparticles for oral delivery of doxorubicin: In vivo pharmacokinetics and toxicity studies in rats.Pharm Res., 26(3):492-501.
- 23. Jain, S.K., Agarwal, G.P.&Jain, N.K. (2006). Evaluation of porous carries based floating or list atmicrospheres for gastric delivery. AAPS Pharm Sci Tech., 7(4): E54-E62.
- 24. Kaushik, D., Sardana, S.&Mishra, D. (2010). *In vitro* characterization and cytotoxicity analysis of 5-FUloaded chitosan microsphere for targeting colon cancer. Int. J. Pharm. Edu. and Res., 44(3): 267-273.

CITATION OF THIS ARTICLE

Raghav Mishra. Formulation and Analysis of Floating Microspheres of Amethopterin. Bull. Env. Pharmacol. Life Sci., Vol 9[12] November 2020 :114-119