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ABSTRACT 

The interplay between T-helper 17 (Th17) and regulatory T (Treg) cells plays a crucial role in immune homeostasis, 
particularly in chronic viral infections such as HIV. Th17 cells are essential for mucosal immunity and pathogen clearance, 
while Treg cells suppress excessive immune activation to prevent immunopathology. However, an imbalance in Th17/Treg 
dynamics contributes to chronic inflammation and poor immune reconstitution in HIV-infected individuals. This review 
aims to examine the role of Th17/Treg balance in HIV pathogenesis with a focus on its implications for HIV management 
in West Africa.  A comprehensive literature review was conducted using peer-reviewed articles from PubMed, Scopus, and 
Web of Science databases. Studies investigating Th17/Treg dynamics in HIV, particularly in African populations, were 
included. The review explored cytokine signaling pathways, genetic and environmental influences, and emerging 
immunomodulatory strategies targeting Th17/Treg equilibrium. Additionally, clinical data on the impact of Th17/Treg 
balance on antiretroviral therapy (ART) response and immune recovery were analyzed. Findings indicate that HIV 
infection disrupts Th17/Treg homeostasis, which leads to Th17 depletion and increased Treg-mediated 
immunosuppression. This imbalance contributes to immune dysfunction, which is associated with poor ART responses. In 
West African populations, high prevalence of coinfections and nutritional factors further modulate Th17/Treg responses. 
While ART partially restores Th17 function, residual immune activation persists, necessitating additional 
immunomodulatory interventions. The Th17/Treg axis plays a pivotal role in HIV pathogenesis and treatment responses. 
Given the unique immunological landscape in West Africa, targeted immunotherapeutic strategies could enhance ART 
efficacy. 
Keywords: Th17/Treg balance, HIV immunopathogenesis, Immune regulation, West Africa, Cytokine signaling, 
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INTRODUCTION 
HIV remains a major public health concern in West Africa, a region with diverse epidemiological patterns 
and unique socio-economic and genetic influences on disease progression. While West Africa has lower HIV 
prevalence rates compared to Eastern and Southern Africa, countries such as Nigeria, Ivory Coast, and 
Ghana still experience significant disease burdens [1, 2]. The predominant strain in the region is HIV-1 
group O and HIV-2, with HIV-2 known for its slower disease progression and lower transmission rates. 
However, despite advancements in antiretroviral therapy (ART), challenges such as late diagnosis, limited 
healthcare infrastructure, and high rates of coinfections continue to hinder effective disease control [3, 4].  
HIV pathogenesis is characterized by a progressive loss of immune function, primarily due to CD4+ T cell 
depletion and chronic immune activation [5]. Beyond direct viral-mediated cytotoxicity, HIV disrupts 
immune homeostasis by altering key regulatory pathways, which leads to persistent inflammation [6]. The 
immune system attempts to balance pro-inflammatory and anti-inflammatory responses to prevent 
excessive tissue damage while maintaining effective antiviral immunity. Dysregulation of this balance 
exacerbates disease severity, increasing susceptibility to opportunistic infections and non-AIDS-related 
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complications. Thus, immune regulatory mechanisms play a pivotal role in determining the pace of HIV 
progression and the effectiveness of ART in restoring immune function [7, 8). 
Among the various immune regulatory components, the interplay between T-helper 17 (Th17) and 
regulatory T (Treg) cells is critical for maintaining immune equilibrium. Th17 cells play a protective role in 
mucosal immunity by enhancing antimicrobial responses through maintaining gut barrier integrity and 
preventing microbial translocation—a key driver of chronic immune activation in HIV [9]. Conversely, Treg 
cells suppress excessive immune responses to prevent autoimmunity and tissue damage [10]. However, in 
HIV infection, this balance is disrupted; Th17 cells are selectively depleted, which leads to increased gut 
permeability and systemic inflammation, while Treg cells expand, contributing to immune suppression and 
viral persistence. The resulting Th17/Treg imbalance not only accelerates HIV disease progression but also 
influences ART responses and the likelihood of immune reconstitution [9, 11]. Given the distinct 
immunological landscape in West African populations, shaped by genetic variations and environmental 
factors, further investigation into Th17/Treg dynamics is essential for optimizing HIV treatment strategies 
tailored to the region’s needs. 
 
IMMUNOLOGICAL BASIS OF Th17/Treg DYNAMICS IN HIV 
Th17 and Treg cells play critical yet opposing roles in maintaining immune homeostasis. Th17 cells, a 
subset of CD4⁺ T cells, primarily defend mucosal barriers against bacterial and fungal infections through 
the production of pro-inflammatory cytokines such as interleukin-17 (IL-17) and IL-22. They promote 
neutrophil recruitment and antimicrobial peptide production, which ensures pathogen clearance [12, 13]. 
Conversely, Treg cells, characterized by the expression of the transcription factor FoxP3, exert 
immunosuppressive functions essential for controlling excessive immune activation. These cells prevent 
autoimmunity and maintain tolerance by secreting anti-inflammatory cytokines such as IL-10 and 
transforming growth factor-beta (TGF-β) [14]. The balance between Th17 and Treg cells is vital for immune 
homeostasis, as dysregulation can result in chronic inflammation or immune suppression, both of which 
are pivotal in HIV pathogenesis. 
Distinct cytokine networks tightly regulate the differentiation and function of Th17 and Treg cells. Th17 
cell development is driven by the presence of IL-6, IL-1β, and TGF-β, with IL-23 playing a crucial role in 
their expansion and stabilization [15]. IL-17, the hallmark cytokine of Th17 cells, induces inflammatory 
responses essential for pathogen clearance but can also contribute to tissue damage in chronic infections 
[16]. Additionally, IL-22 enhances epithelial barrier integrity, further supporting mucosal immunity [17]. 
In contrast, Treg cells require TGF-β for differentiation, while IL-10 reinforces their immunosuppressive 
activity by dampening excessive immune activation [18]. The interplay between these cytokines 
determines the balance between protective immunity and immune tolerance. An optimal Th17/Treg 
equilibrium ensures effective pathogen control while preventing harmful inflammation. However, 
perturbations in these cytokine pathways can lead to immune dysfunction, as seen in HIV infection. 
HIV profoundly disrupts the Th17/Treg balance, which leads to immune dysregulation and disease 
progression. One of the earliest immunological consequences of HIV infection is the preferential depletion 
of Th17 cells in the gut-associated lymphoid tissue (GALT). This depletion compromises mucosal integrity 
and causes chronic inflammation [19]. The loss of IL-17 and IL-22 production weakens mucosal defenses, 
which facilitates opportunistic infections and disease progression. Conversely, Treg cells are relatively 
preserved or even expanded in HIV-infected individuals, which contributes to immune suppression and 
impaired antiviral responses [20]. The increased presence of IL-10 and TGF-β further inhibits effective 
immune activation, which creates an environment that favors viral persistence. This imbalance between 
inflammatory Th17 cells and immunosuppressive Treg cells is a hallmark of HIV pathogenesis. 
 
Th17/Treg IMBALANCE IN HIV PROGRESSION AND IMMUNE DYSFUNCTION 
One of the earliest and most detrimental consequences of HIV infection is the selective depletion of Th17 
cells, particularly in the GALT. Th17 cells play a crucial role in maintaining mucosal barrier integrity by 
promoting epithelial repair, antimicrobial peptide production, and neutrophil recruitment [21]. Their loss 
leads to increased gut permeability, which allows the leakage of bacterial products such as 
lipopolysaccharides (LPS) into the bloodstream. This translocation triggers systemic immune activation 
[22]. The decline in IL-17 and IL-22 further exacerbates mucosal damage, which impairs the host's ability 
to control opportunistic infections. Consequently, the gut becomes a major site of chronic immune 
activation, making it more susceptible to co-infections [23]. 
While Th17 cells are depleted during HIV infection, Treg cells are often preserved or even expanded to 
contribute to an immunosuppressive environment. This expansion is driven by increased levels of IL-10 
and TGF-β, which promote Treg differentiation and suppress effector T-cell responses [11, 24]. The 
accumulation of Treg cells dampens immune activation, thereby reducing the effectiveness of antiviral 
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responses. High Treg activity also inhibits antigen-presenting cells and cytotoxic T lymphocytes (CTLs), 
which further impairs viral clearance [25]. This situation, where excessive immune suppression coexists 
with chronic inflammation, creates an immune environment that favors HIV replication while limiting 
effective immune control. The imbalance between Th17 loss and Treg expansion fuels chronic 
inflammation, which is a key driver of immune exhaustion in HIV. Persistent immune activation, triggered 
by microbial translocation and viral replication, leads to sustained production of pro-inflammatory 
cytokines such as IL-6, TNF-α, and IFN-γ [26, 27]. This prolonged immune stimulation results in T-cell 
dysfunction, characterized by the upregulation of inhibitory receptors such as PD-1, CTLA-4, and TIM-3. As 
a result, CD4⁺ and CD8⁺ T cells progressively lose their proliferative and cytotoxic capacities [28]. 
Additionally, chronic inflammation contributes to non-AIDS-related comorbidities, including 
cardiovascular diseases and metabolic disorders, which further complicates HIV management. Table 1 
describes the consequences of Th17/Treg imbalance in HIV progression and immune dysfunction. 
 
GENETIC AND ENVIRONMENTAL INFLUENCES ON Th17/Treg BALANCE IN WEST AFRICAN 
POPULATIONS 
Genetic variations play a crucial role in shaping immune responses, including the regulation of Th17 and 
Treg cell dynamics. In West African populations, polymorphisms in cytokine genes such as IL-17A, IL-10, 
and TGF-β have been linked to variations in immune activation, inflammation, and disease progression in 
HIV-infected individuals [35, 36]. Certain single nucleotide polymorphisms (SNPs) in the IL-17 gene may 
influence Th17 differentiation and cytokine production, potentially affecting mucosal immunity and 
microbial translocation. Similarly, polymorphisms in IL-10 and TGF-β genes could alter Treg-mediated 
immune suppression, thereby impacting the ability to control chronic inflammation and immune 
exhaustion [37].  
The high burden of coinfections such as tuberculosis (TB) and malaria in West Africa significantly 
influences Th17/Treg balance in HIV-infected individuals. TB, a common opportunistic infection in people 
living with HIV, induces strong Th1 and Th17 responses, which may initially aid in pathogen clearance. 
However, chronic TB infection can lead to Th17 depletion and an increase in Treg cells, which contributes 
to immune suppression and increased susceptibility to further infections [38, 39]. Similarly, malaria, 
caused by Plasmodium species, triggers immune modulation that skews the Th17/Treg ratio. Studies 
suggest that severe malaria promotes Treg expansion and IL-10 production, dampening immune responses 
and potentially exacerbating HIV-related immune dysfunction [40, 41]. These coinfections create a complex 
immunological landscape, where Th17 cell depletion and excessive Treg activity may accelerate HIV 
disease progression. 
Malnutrition remains a significant public health challenge in many parts of West Africa, with profound 
effects on immune function and cytokine signaling [42]. Deficiencies in key micronutrients such as vitamin 
A, vitamin D, and zinc have been shown to disrupt Th17/Treg balance, leading to impaired mucosal 
immunity and increased inflammation [43]. For instance, vitamin D deficiency is associated with reduced 
IL-17 production and enhanced Treg activity. Additionally, exposure to environmental pollutants, chronic 
parasitic infections, and poor sanitation conditions can exacerbate immune dysregulation, further shifting 
the Th17/Treg balance toward immune suppression and chronic inflammation [44]. These environmental 
stressors not only influence HIV progression but also affect responses to ART and immunotherapy. Table 2 
shows the impacts of genetic and environmental influences on Th17/Treg balance. 
 
CLINICAL IMPLICATIONS OF Th17/Treg IMBALANCE IN HIV MANAGEMENT 
The balance between Th17 and Treg cells plays a pivotal role in determining the trajectory of HIV 
progression and treatment response. A decline in Th17 cells is associated with increased microbial 
translocation, systemic inflammation, and a higher risk of opportunistic infections, all of which contribute 
to rapid disease progression [49]. Conversely, an expansion of Treg cells may suppress protective immune 
responses, leading to inadequate viral control and immune exhaustion. Studies have shown that individuals 
with a preserved Th17 compartment tend to have slower HIV progression and better responses to ART [50, 
51]. Therefore, monitoring Th17/Treg ratios could provide valuable insights into disease severity, ART 
efficacy, and the likelihood of immune reconstitution following treatment initiation. 
Given the central role of Th17/Treg dynamics in HIV immunopathogenesis, these cell subsets have emerged 
as potential biomarkers for disease monitoring and therapeutic decision-making. Quantifying Th17 and 
Treg populations, along with their associated cytokines (e.g., IL-17, IL-10, TGF-β), could offer a more precise 
evaluation of immune status beyond traditional CD4+ T-cell counts [52]. Elevated Treg frequencies, for 
instance, may indicate persistent immune suppression, while diminished Th17 levels could serve as an 
early marker of gut mucosal damage and systemic inflammation. These biomarkers may also help predict 
ART treatment failure and individuals at higher risk of comorbidities such as tuberculosis and chronic 
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inflammation-related disorders [53]. Therefore, integrating Th17/Treg profiling into routine immune 
monitoring could enhance patient stratification. 
Effective HIV vaccines rely on the induction of robust and durable immune responses [54]. However, 
Th17/Treg imbalance may impair vaccine efficacy by modulating immune activation and memory cell 
formation. Excessive Treg activity can dampen vaccine-induced immune responses, which reduces the 
ability to generate long-lasting protective immunity [55]. Conversely, a compromised Th17 compartment 
may limit mucosal immunity, which is critical for preventing HIV transmission and early viral replication 
[56]. Furthermore, the extent of Th17 depletion and Treg expansion may influence immune reconstitution 
following ART initiation, with some individuals failing to achieve optimal CD4+ T-cell recovery despite viral 
suppression [57]. Strategies aimed at restoring Th17/Treg balance, such as cytokine-based adjuvants or 
immune checkpoint modulators, could enhance vaccine efficacy and improve immune reconstitution in 
HIV-infected individuals. 
 
THERAPEUTIC STRATEGIES TARGETING Th17/Treg BALANCE 
ART remains the cornerstone of HIV treatment, significantly reducing viral replication and restoring 
immune function [58]. However, its impact on Th17/Treg dynamics is variable. While ART helps in partial 
recovery of Th17 cells, particularly in individuals who initiate treatment early, complete restoration of 
Th17 function is often limited, especially in those with advanced disease [59]. Persistent immune activation 
and microbial translocation may continue to drive inflammation despite viral suppression. Additionally, 
Treg expansion persists in some individuals, potentially contributing to immune suppression and 
incomplete CD4+ T-cell recovery [60]. These findings highlight the need for adjunctive strategies to 
enhance Th17 reconstitution while preventing excessive Treg-mediated immune suppression. 
Given the critical role of cytokines in regulating Th17 and Treg differentiation, targeted 
immunomodulatory therapies have been explored to restore balance [61]. IL-17 inhibitors, which have 
been widely used in autoimmune diseases, may hold potential for modulating excessive Th17 responses in 
the context of chronic immune activation. However, their use in HIV requires careful evaluation to avoid 
further compromising mucosal immunity [62]. On the other hand, TGF-β modulators aim to regulate 
excessive Treg activity, thereby preventing immunosuppression and enhancing antiviral immunity. 
Therapies that selectively modulate these pathways could help fine-tune Th17/Treg dynamics without 
disrupting overall immune homeostasis. 
Recent evidence suggests that gut microbiome composition significantly influences Th17/Treg balance, 
given the role of microbial-derived metabolites in immune regulation. Probiotic supplementation with 
beneficial bacteria such as Lactobacillus and Bifidobacterium has been shown to enhance Th17 cell 
recovery and reduce systemic inflammation in HIV-infected individuals [63, 64]. Additionally, microbiome-
based interventions, including fecal microbiota transplantation (FMT), are being investigated for their 
potential to restore gut homeostasis and improve mucosal immunity [65]. Cytokine-based therapies 
represent another promising avenue. IL-7 and IL-22 have been explored for their capacity to enhance Th17 
cell survival and promote mucosal healing, while IL-2 therapy may help modulate Treg expansion to 
prevent excessive immune suppression [66, 67, 68]. These approaches, either alone or in combination with 
ART, could provide novel strategies to optimize immune reconstitution in HIV-infected individuals. Table 
3 shows the implications of therapeutic strategies targeting Th17/Treg balance in HIV. 
 
FUTURE DIRECTIONS AND RESEARCH GAPS 
Despite growing evidence on Th17/Treg dynamics in HIV, most studies have been conducted in Western 
or Asian populations, with limited data from West Africa. Given the distinct genetic background, 
environmental exposures, and prevalence of coinfections in this region, there is a pressing need for region-
specific research to understand how these factors influence Th17/Treg balance. Large-scale cohort studies 
investigating cytokine profiles, immune cell distribution, and microbiome composition in West African HIV-
infected individuals will provide crucial insights into disease progression and treatment responses [74, 75, 
76]. These studies will also help refine immunotherapeutic strategies tailored to the unique immune 
landscape of West African populations. 
The growing understanding of Th17/Treg dysregulation opens new avenues for personalized 
immunotherapy in HIV care. Targeted interventions, such as cytokine-based therapies, microbiome 
modulation, and immune checkpoint inhibitors, could be tailored based on an individual’s immune profile. 
For instance, patients with persistent Treg expansion and immune suppression may benefit from TGF-β 
modulation, while those with severe Th17 depletion and mucosal dysfunction may require IL-22 or IL-7 
therapy [77]. The integration of multi-omics approaches, including transcriptomics and proteomics, could 
further refine patient stratification and optimize treatment strategies [78]. However, translating these 
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personalized approaches into clinical practice requires rigorous validation through clinical trials and cost-
effective implementation strategies. 
While targeting Th17/Treg imbalance presents a promising adjunct to ART, several challenges hinder its 
clinical translation. First, the complexity of immune regulation necessitates precise modulation to avoid 
unintended consequences, such as exacerbating inflammation or further suppressing antiviral immunity 
[79]. Second, the high cost of immunotherapies and advanced diagnostic tools may limit accessibility in 
resource-constrained settings, particularly in West Africa. Additionally, ethical considerations regarding 
patient stratification based on immune profiling must be addressed to ensure equitable healthcare access 
[80]. Overcoming these challenges requires interdisciplinary collaboration, policy-driven funding for 
immunological research, and the development of scalable, cost-effective interventions that can be 
integrated into routine HIV management. 
 
CONCLUSION 
Th17/Treg imbalance plays pivotal role in HIV pathogenesis, particularly in West African populations 
where genetic, environmental, and infectious factors further modulate immune responses. Addressing this 
dysregulation through targeted biomarkers, personalized therapies, and optimized ART could enhance 
disease treatments. Continued region-specific research and collaboration are essential to translate these 
findings into practical strategies for improving HIV care in West Africa. 
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