Bulletin of Environment, Pharmacology and Life Sciences

Bull. Env. Pharmacol. Life Sci., Vol 9[9] August 2020 : 71-83 ©2020 Academy for Environment and Life Sciences, India Online ISSN 2277-1808 Journal's URL:http://www.bepls.com CODEN: BEPLAD Global Impact Factor 0.876 Universal Impact Factor 0.9804 NAAS Rating 4.95

ORIGINAL ARTICLE

Efficient, Cost Effective Analytical Method Validation for Simultaneous Estimation of Related Substances in Ethinyl Estradiol & Drospirenone By HPLC in Combined Dosage Form

Abhiram Dash *, Neelu Jain

Department of Science, Shri Satya Sai University of Technology and Medical Sciences Sehore- (MP) - 466001 E mail: abhiramdash@gmail.com

ABSTRACT

A simple, accurate, rapid, precise and gradient High performance liquid chromatographic (HPLC) in-house method was developed and validated for the determination of related substance of Ethinyl estradiol and drospirenone in tablet formulation. The method employs Waters HPLC system on Oyster BDS premium (150mmX4.6mm, 3µm) or equivalent and gradient method with change in flow Rate with respect to time& injection volume 10µL, kept column temperature 30°C. The detection was carried out at 245 nm for drospirenone &210 nm for Ethinyl estradiol. Retention Time of Ethinyl estradiol and drospirenone were found to be 39 minutes & 46 minutes. This developed method was successfully utilized for the quantitative estimation of Ethinyl estradiol and drospirenone in pharmaceutical dosage forms. Correlation coefficient of ethinylestradiol impurities were found within acceptance criteria (NLT 0.99). Accuracy study were performed for all known impurities spike into sample solution and result found within predefined acceptance criteria. This method was validated for accuracy, precision, linearity and specificity as per ICH guidelines. **Keywords:** Ethinyl Estradiol, Drospirenone, Analytical, method validation, Simultaneous estimation.

Received 13.04.2020

Revised 18.05.2020

Accepted 11.07.2020

INTRODUCTION

Ethinyl estradiol is also known as ethynyl estradiol (EE) which is a derivative of 17β – estradiol. It is the first orally active semi synthetic steroidal estrogen that is used for the management of menopausal symptoms and female hypogonadism. Ethinyl estradiol is an orally bioactive estrogen used in almost all modern formulations of combined oral contraceptive pills. Chemically it is 19-Nor-17 α -pregna-1, 3, 5(10)-trien-20-yne-3, 17-diol ¹⁻². Drospirenone is an analogue of the antimineralocorticoid spironolactone that is synthesized from androstenone. Unlike other progestogens, drospirenone, an analogue of spironolactone, has biochemical and pharmacologic profiles similar to endogenous progesterone, especially regarding antimineralocorticoid and antiandrogenic activities. As a combination, oral contraceptive, drospirenone with Ethinyl estradiol, is effective and has positive effects on weight and lipid levels³⁻⁴.So far to our present knowledge, HPLC methods were available in the literature for analyzing Ethinyl estradiol and drospirenone with other drug combinations in pharmaceutical dosage forms⁵. It felt necessary to develop a simple, precise and rapid spectrophotometric method for the quantitative determination of Ethinyl estradiol and drospirenone in combined dosage form. These are hormonal preparation used for reversible suppression of fertility. Because of our alarming population trends, antifertility drugs are the need of the day. In developing countries, particularly, the mortality rate declined and birth rate has increased due to urbanization. In the earlier part of 20th century, methods of contraception used (condoms, diaphragms, spermicidal creams, foam tablets etc.) were intimately related to sexual intercourse, therefore, despised by most couples. These also have higher failure rate. Rock and Pincus announced the successful use of an oral progestin for contraception in 1955. Hormonal contraception refers to birth control methods that act on the endocrine system. Almost all methods are composed of steroid hormones. This type of birth control contains either progestin, estrogen or both. The original hormonal method the combined oral contraceptive pill was first marketed as a contraceptive in 1960⁶⁻⁷. The validated method is stability-indicating, simple, robust, precise and accurate for the

determination of Drosperinone & ethinylestradiol and degradation impurities in tablet dosage form. The method is capable of separating the peaks due to the degradation products from the main peak. The method was validated as per ICH requirements and thus is useful for routine analysis in quality control laboratories [8-10].

MATERIAL AND METHODS

Apparatus and instruments used in experiment are listed in table 1.

S.No.	Instruments	Make	Software	Detector/ Model No.	Separation Module
1	HPLC	Waters Alliance	Empower 2	UV/2996	2695
2	HPLC	Waters Alliance	Empower 2	PDA/2998	2695
3	Weight balance	Mettler Toledo	NA	ML204	NA
4	Sonicator	Lab India	NA	NA	NA

Table: 1 Apparatus / Instruments used

Working standards: Pharmaceutical grade Ethinyl estradiol and drospirenone working standards, sample & impurities were kindly supplied as a gift sample by Alpa Laboratories Private Limited, Sector 3, Pithampur, Madhya Pradesh, India.

Methodology: Reagents and Solvents: Water (HPLC grade, Milli Q or equivalent), Acetonitrile (HPLC grade, JT Baker or equivalent) Methanol (HPLC grade, JT Baker or equivalent).

Diluent preparation: Prepare a degassed and filtered mixture of water and Acetonitrile (30: 70, v/v). Mobile phase A: water

Mobile phase B: Acetonitrile: Methanol (60:40 v/v)

Chromatographic conditions:

Column	:	Oyster BDS premium (150mmX4.6mm, 3µm) or	•
Column Temperature	:	30°C	
Wavelength	:	210 nm and 245 nm	
Injection Volume	:	10µL	
Retention time of a) Ethinyl Estradiol b) Drospirenone	:	About 39 minutes About 46 minutes	

Gradient programme:

Time (min.)	Flow rate (mL/min.)	Mobile Phase A (%)	Mobile Phase B (%)
0.0	1.10	72	28
45	1.10	54	46
55	1.10	45	55
65	1.50	05	95
80	1.50	05	95
85	1.10	72	28
95	1.10	72	28

Preparation of Estrone stock Solution: Weigh accurately about 3 mg of Estrone impurity standard and transfer it into a 100-mL volumetric flask. Add about 70 mL of Acetonitrile and sonicate to dissolve. Allow it to come to room temperature, make up to the mark with Acetonitrile and mix. Label this solution as Solution A. (Concentration: 30 µg per mL).

Preparation of Ethinylestradiol Stock Solution: Weigh accurately about 30 mg of Ethinyl Estradiol working standard and transfer it into 50 mL volumetric flask. Add about 30 mL of diluent and sonicate to dissolve. Allow it to come to room temperature, make up to the mark with diluent and mix. Label this solution as Solution B. (Concentration: $600 \ \mu g \ per \ mL$) Further dilute 2.0 mL of the above Solution B to 20 mL with diluent and mix. Label this solution as Solution C. (Concentration: $60 \ \mu g \ per \ mL$).

Preparation of Drospirenone Standard Stock Solution: Weigh accurately about 50 mg of Drospirenone working standard and transfer it into 25 mL volumetric flask. Add about 15 mL of diluent and sonicate to dissolve, allow it to come to room temperature, make up to the mark with diluent and mix. Label this solution as Solution D. (Concentration: 2000 µg per mL).

Preparation of Diluted Standard Solution: Pipette out 1.0 mL of Solution C and 3.0 mL of Solution D into a 100mL volumetric flask, dilute up to the mark with diluent and mix. (Concentration of Drospirenone is 60 μ g per mL and Ethinyl Estradiol is 0.6 μ g per mL)

Preparation of System suitability Solution: Weigh accurately about 60 mg of Drospirenone working standard and transfer it into a 10mL volumetric flask. Add about 5 mL of diluent and sonicate to dissolve. Allow it to come to room temperature. Add 0.2 mL of solution A, 1.0 mL of solution B and make up to the mark with diluent and mix. (Concentration of Drospirenone is 6000 μ g per mL, Ethinyl Estradiol is 60 μ g per mL and Estrone is 0.6 μ g per mL).

Preparation of sensitivity solution: Dilute 2.0 mL of the above diluted standard solution to 20 mL with diluent and mix. (Concentration of Drospirenone is $6 \mu g$ per mL and Ethinyl Estradiol is 0.06 μg per mL).

Preparation of Placebo Solution: Weigh accurately about placebo blend equivalent to 20 tablets or 20 placebo tablets, transfer into a 20mL volumetric flask, add accurately 10.0 mL of diluent with the help of pipette, stopper well and sonicate for 15 minutes at room temperature with intermittent shakings. Allow it to come to room temperature and centrifuge the solution for 3 minutes at about 3000 rpm. Filter the supernatant solution through 0.45 μ m nylon membrane filter, discard first 2 mL of the filtrate and inject.

Preparation of Sample Solution: Weigh accurately about 20 tablets, transfer into a 20mL volumetric flask, add accurately 10.0 mL of diluent with the help of pipette, stopper well and sonicate for 15 minutes at room temperature with intermittent shakings. Allow it to come to room temperature and centrifuge the solution for 3 minutes at about 3000 rpm. Filter the supernatant solution through $0.45\mu m$ nylon membrane filter, discard first 2 mL of the filtrate and inject.

Note: 1) Do not make up the Sample solutions to the volume.

2) Sonicator temperature should not exceed 25°C

Procedure: Inject the specified volume of Diluent, Sensitivity solution, System suitability solution, Diluted standard solution and Sample solution into the chromatograph as mentioned in the Injection sequence table and record the chromatograms. Disregard peaks due to diluent and placebo solution. Disregard the impurity peaks below LOQ level for both Drospirenone and Ethinyl Estradiol. Calculate all known impurities of Ethinyl Estradiol against Ethinyl Estradiol diluted standard area at 210 nm. Calculate all unknown impurities due to Drospirenone at 245 nm and Ethinyl Estradiol at 210 nm against corresponding diluted standards areas at corresponding wave lengths. Calculate any other impurity at 245 nm against Drospirenone diluted standard area at 245 nm. Any other impurity at 210 nm against Ethinyl Estradiol diluted standard area at 210 nm. Any other impurity showing response at both wavelength 210 nm and 245 nm will be calculated at wavelength where it shows maximum area response against Drospirenone diluted standard area at respective wavelength.

RRT, RF and LOQ values for known impurities of Ethinyl Estradiol:

, c	1 5	
Name of the Impurity	RRT w.r.t Ethinyl Estradiol	RF
6-alpha Hydroxy Ethinyl Estradiol	about 0.26	0.94
6-beta Hydroxy Ethinyl Estradiol	about 0.35	1.35
6-keto-Ethinyl Estradiol	about 0.50	1.09
Δ9,11-Ethinyl Estradiol	about 0.92	0.88
Δ6-Ethinyl Estradiol	about 0.94	0.84
Ethinyl Estradiol	about 1.00	1.00
Estrone#	about 0.96	1.01
17β Ethinyl Estradiol#	about 1.15	1.02
Drospirenone	NA	NA

These are process impurities and not part of finished product specification. But these impurities to be considered for calculation of total impurities.

Evaluation of System suitability:

Sensitivity solution: The area ratio of sensitivity solution to diluted standard solution should be 0.08 to 0.12 for Drospirenone at 245 nm and 210 nm and for Ethinyl Estradiol at 210 nm.

System suitability solution: Resolution between Estrone peak and Ethinyl Estradiol should not be less than 2.0 and tailing factor for Drospirenone at 245 nm and 210 nm should not be more than 3.0 and for Ethinyl Estradiol at 210 nm should not be more than 2.0.

Diluted standard solution: The relative standard deviation of six replicate injections for Drospirenone at 245 nm and 210 nm and for Ethinyl Estradiol at 210 nm should not be more than 5.0%.

RESULTS AND DISCUSSION

Specificity: Blank (diluent), sensitivity solution, system suitability solution, placebo solution, diluted standard solution, all known impurity solutions individually, sample solution and sample solution spiked with all known impurities at specification level were prepared and injected into the HPLC equipped with a photodiode array detector and analyzed as per above mentioned methodology. The retention time of the peak of Drospirenone and Ethinyl Estradiol in sample solution was obtained at 43.86 min. and 36.86 min. respectively. The retention time of the peak of Drospirenone and Ethinyl Estradiol in and 36.83 min. respectively. The retention time of all the known impurities spiked in sample solution were found to be comparable with those injected individually. Results are tabulated in Table 2.

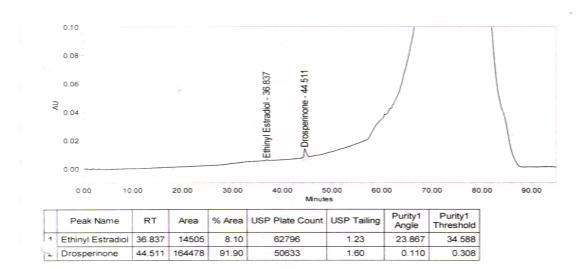

Table 2: Individual Identification							
Impurities/Active	Individual Injection	Spiked Sa	mple				
	RT (min)	RT (min) RT (min)					
Drospirenone and its impurities							
Ethinyl Estradiol and its impurities							
6α Hydroxy Ethinyl Estradiol	9.606	9.637	0.25				
6β Hydroxy Ethinyl Estradiol	13.009	12.973	0.35				
6 Keto Ethinyl Estradiol	18.379	18.326	0.49				
Δ9,11Ethinyl Estradiol	34.029	33.866	0.92				
Ethinyl Estradiol	36.878	36.872	1.00				
Δ6 Ethinyl Estradiol	34.991	34.952	0.95				

Table 2: Individual Identification

Interference Study: Blank (diluent), sensitivity solution, system suitability solution, placebo solution, diluted standard solution, all known impurity solutions individually, sample solution and sample solution spiked with all known impurities at specification level were prepared and injected into the HPLC equipped with a photodiode array detector and analyzed as per methodology. Blank (diluent) and placebo solution I did not show interference at the retention time of Drospirenone, Ethinyl Estradiol and their impurities. Peak purity of Drospirenone, Ethinyl Estradiol and their impurities in spiked sample solution passed. Results are tabulated in table 3 and figure 1 to figure 4.

Impurities/Active	Peak Purity					
	Individua	l Injection	Spiked	Sample		
	PA	РТ	PA	РТ		
Ethinyl Estradiol and its impurities						
6α Hydroxy Ethinyl Estradiol	21.371	31.540	20.106	28.100		
6β Hydroxy Ethinyl Estradiol	24.418	37.252	23.580	33.402		
6 Keto Ethinyl Estradiol	14.402	21.467	10.684	13.203		
Δ9,11Ethinyl Estradiol	17.747	24.529	10.313	14.211		
Δ6 Ethinyl Estradiol	14.689	22.497	11.779	15.717		
Ethinyl Estradiol	32.784	53.026	0.437	0.697		

Table 3: Interference Study

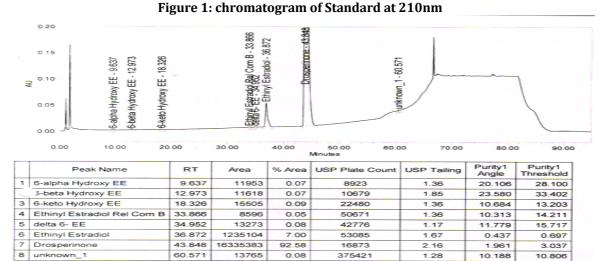


Figure 2: Chromatogram of Sample Spiked at 210nm

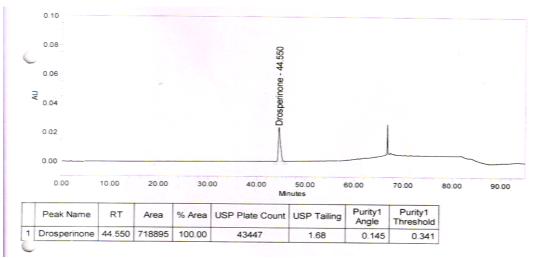


Figure 3: Chromatogram of Diluted Std at 245nm

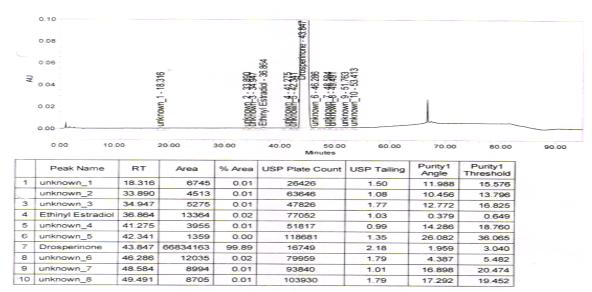


Figure 4: Chromatogram of Sample Spiked at 245nm

Force Degradation: The peak purity of Drospirenone and Ethinyl Estradiol and their impurities in degraded samples passed. The forced degradation data of Drospirenone, Ethinyl Estradiol and their impurities is tabulated in Table 4-5.

Sr.No		Condition			Purity			
			Degradation	PA	РТ			
1		Control Sample						
2	Acid degradation	1.0 mL of 0.1M Methanolic HCl; sonication for 60 minutes	29.1	0.150	0.448			
3	Alkali degradation	1.0 mL of 0.1M Methanolic NaOH; sonication for 60 minutes	21.9	0.160	0.507			
4	Peroxide degradation	1.0 mL of $30\% \text{ H}_2\text{O}_2$; kept on bench for 24hours	15.6	0.422	0.762			
5	Photolytic	Exposed the sample for 1.2 million lux.	6.0	1.18	3.250			
6	Thermal degradation	Exposed the sample at 102°C for 24 Hrs.	3.1	1.18	3.466			
7	Humidity degradation	Exposed the sample at 40° C/75 % RH for 7 days.	0.0	1.18	3.510			

Table 4: Forced degradation data of Drospirenone

Table 5: Forced degradation data of Ethinyl Estradiol

Sr.		Condition			Purity
No.					
1		NA	23.867	34.588	
2	Acid degradation 1.0 mL of 0.1M Methanolic HCl; sonication for 60 minutes.		11.1	0.215	0.513
4	Alkali degradation 1.0 mL of 0.1 M Methanolic NaOH; sonication for 60 minutes		11.0	0.240	0.549
5	Peroxide degradation 1.0 mL of 30% H ₂ O ₂ ; kept on bench for 24		14.3	0.323	0.799
6	Photolytic degradation Exposed the sample for 1.2 million lux.		5.42	0.423	0.931
7	Thermal degradation Exposed the sample at 102°C for 24 Hrs.		6.72	0.441	0.930
8	Humidity degradation	Exposed the sample at 40°C/75 % RH for 7	0.00	0.507	1.045

Precision: % RSD (n=6) for peak area counts of Drospirenone and Ethinyl Estradiol and Ethinyl Estradiol Related compound B from six replicate injections of diluted standard solution was found within acceptance criteria.

Method precision (Repeatability): Six sample solutions of Drospirenone and Ethinyl Estradiol Tablets (2.5 mg/0.012 mg) were prepared by spiking the known impurities at the specification level and analysed as per methodology.

Intermediate Precision (Ruggedness):% RSD (n=6) for % of known impurities in six sample solutions and overall % RSD (n=12) for % of known impurities from Method Precision and Intermediate Precision results was found within acceptance criteria. Results are tabulated in table 6 to 8.

1 a	Table 6: System Precision							
Index at least	Peak Area counts							
Injection	Drospirenone	Ethinyl Estradiol						
1	161669	12154						
2	161606	12278						
3	160473	12325						
4	161443	12627						
5	161510	12164						
6	161213	12348						
Mean	161319	12316						
SD	443.50	172.40						
% RSD	0.30	1.40						

Table	6: System	Precision
	0.09000	

Table 7: Cumulative results of Method and Intermediate Precision (Dros & EE impurities)

	Single max Impurity				
	M.P.	I.P.			
	(%w/w)	(%w/w)			
1	0.152 0.153				
2	0.149	0.149			
3	0.152 0.153				
4	0.152 0.149				
5	0.149	0.153			
6	0.152 0.149				
Overall Mean (n=12)	0.151				
SD (n=12)	0.0017				
%RSD (n=12)	1.	15			

Table 8: Cumulative results of Method and Intermediate Precision (Ethinyl Estradiol impurities w/w %)

	6α Hydroxy EE		6β Hydroxy EE		6 Keto EE		Δ9,11 EE		$\Delta 6 EE$	
	M.P.	I.P.	M.P.	I.P.	M.P.	I.P.	M.P.	I.P.	M.P.	I.P.
1	0.88	0.90	1.1	1.0	1.10	1.0	1.10	1.1	1.3	1.33
2	0.89	0.90	1.1	1.1	1.00	1.0	1.10	1.1	1.3	1.32
3	0.87	0.90	1.1	1.0	1.00	1.0	1.10	1.1	1.3	1.30
4	0.95	0.90	1.1	1.1	1.00	1.0	1.00	1.1	1.2	1.23
5	0.88	0.90	1.0	1.1	1.00	1.0	1.00	1.0	1.3	1.22
6	0.91	0.90	1.1	1.0	1.00	1.0	1.00	1.0	1.2	1.24
Overall Mean (n=12)	0	.90	1.3	1	1.	1	1.	0	1.0	1.5
SD (n=12)	0	.02	0.0	5	0.0)5	0.0)3	0.03	0.05
%RSD (n=12)	2	.20	4.7	0	4.7	'0	3.0	00	3.00	3.80

Limit of Detection (LOD) and Quantitation (LOQ): Limit of Quantitation (LOQ) was established by injecting six replicates of a solution containing Drospirenone, Ethinyl Estradiol and their known impurities having a concentration which is less than the reporting threshold (0.1%). Limit of Detection (LOD) was established by quantitatively diluting and injecting six replicates of the LOQ solution to obtain

the % RSD (n=6) not more than 30.0. % RSD (n=6) of peak area counts of Drospirenone, Ethinyl Estradiol and their known impurities in predicted LOD and LOQ solutions was found within acceptance criteria. The results are tabulated in Table 9-11.

	Peak Area Counts			
	LOD	LOQ		
	0.03% w/w	0.09% w/w		
1	1736	5255		
2	1726	5289		
3	1722	5080		
4	1713	5214		
5	1744	5316		
6	1728	5154		
Mean	1728	5218		
SD	10.80	88.50		
%RSD	0.60	1.70		

Table 9: LOD & LOQ for Drospirenone

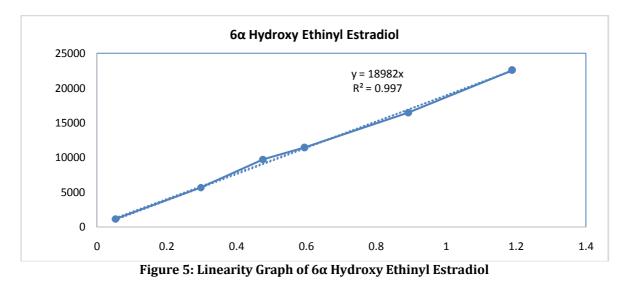
Table 10: Limit of Detection for Ethinyl Estradiol impurities

	Peak Area Counts (0.03% w/w each)					
	6α Hydroxy EE 6 β Hydroxy EE 6 Keto EE $Δ$ 9,11 EE EE		EE	Δ6 EE		
1	383	394	393	402	413	428
2	382	373	415	391	429	406
3	388	374	415	359	428	422
4	369	379	409	364	402	419
5	381	382	415	364	419	405
6	354	393	388	398	436	420
Mean	376	383	406	380	421	417
SD	12.5	9.1	12.2	19.4	12.4	9.2
%RSD	3.30	2.40	3.00	5.10	2.90	2.20

Table 11: Limit of Quantitation for Ethinyl Estradiol impurities

	Peak Area Counts (0.09% w/w each)					
	6α Hydroxy EE 6β Hydroxy EE		6 Keto EE	Δ9,11 EE	Δ6 EE	EE
1	1114	1154	1239	1222	1230	1187
2	1151	1127	1262	1211	1233	1115
3	1139	1169	1241	1241	1241	1164
4	1186	1064	1267	1289	1260	1191
5	1168	1158	1279	1210	1254	1149
6	1143	1266	1200	1253	1262	1145
Mean	1150	1156	1248	1238	1247	1159
SD	24.8	65.7	28.1	30.3	13.9	28.5
%RSD	2.20	5.70	2.30	2.40	1.10	2.50

Linearity: A series of solutions were prepared by quantitatively diluting the working standard stock solution of Drospirenone, Ethinyl Estradiol and their known impurities to obtain solutions at the level of about Limit of Quantitation (LOQ) to 200 % (i.e. at LOQ, 50 %, 80 %, 100 %, 120 %, 150 %, 200% and 250%) of the working concentration of Drospirenone and Ethinyl Estradiol in diluted standard and for


their known impurities with respect to specification limit. Each solution was injected in duplicate and mean area was calculated. The correlation coefficient of Drospirenone, Ethinyl Estradiol and their impurities was found within acceptance criteria. Linearity data reported in table 12-13 and Linearity graph reported in figure 5 to figure 10.

	6α Hydi	roxy EE	6β Hydroxy EE		6 keto EE	
Linearity Level	Concentration (µg/mL)	Mean Area	Concentration (µg/mL)	Mean Area	Concentration (µg/mL)	Mean Area
LOQ	0.0513	1133	0.0547	1141	0.0540	1251
50 %	0.2875	5855	0.3041	4677	0.3000	6567
80 %	0.4560	9130	0.4866	7468	0.4800	9520
100 %	0.5700	12267	0.6082	9297	0.6000	11319
150 %	0.8550	16554	0.9123	13916	0.9000	17686
200 %	1.1400	23756	1.2164	18051	1.2000	22180
Slope 20414.462		14689.033	3	18281.510		
Int	Intercept 17.749 321.579			652.691		
	RF	0.91	1.27		1.02	
Correlatio	on Coefficient	0.9977	0.9998		0.9984	

Table 12: Linearity of Ethinyl Estradiol and their impurities

Table 13: Linearity of Ethinyl Estradiol and their impurities

	Δ9,11	,11 EE Δ6 Ethinyl Estradiol		Ethinyl Estradiol		
Linearity	Concentration	Mean	Concentration	Mean	Concentration	Mean
Level	(µg/mL)	Area	(µg/mL)	Area	(µg/mL)	Area
LOQ	0.0512	1217	0.0522	1232	0.0535	1151
50 %	0.2845	7503	0.2901	6959	0.2973	5671
80 %	0.4552	10285	0.4642	10060	0.4757	9728
100 %	0.5690	12480	0.5802	14085	0.5946	11425
150 %	0.8535	19525	0.8703	20968	0.8919	16460
200 %	1.1380	24592	1.1604	28086	1.1892	22564
9	Slope	21410.053	24365.68	0	18618.354	
Int	tercept	641.391	-312.879)	298.967	
	RF	0.87	0.76		1.00	
Correlati	on Coefficient	0.9978	0.9989		0.9990	

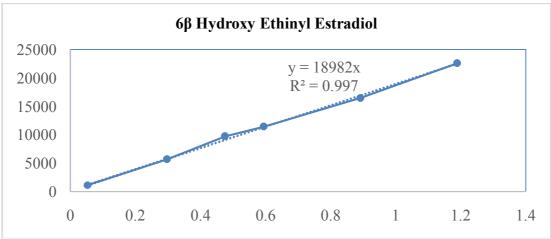
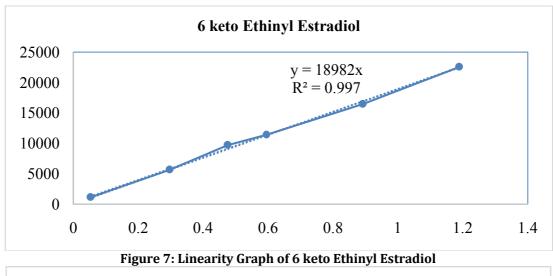
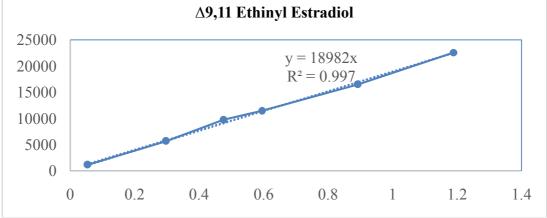
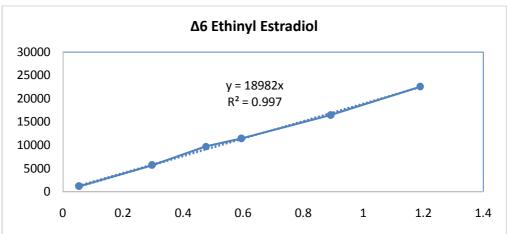
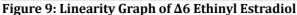
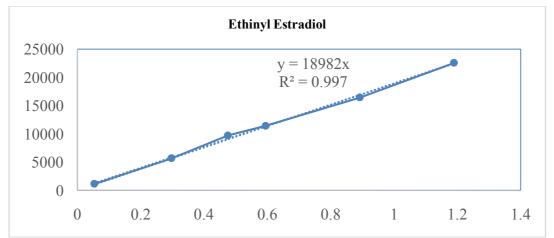
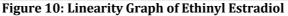



Figure 6: Linearity Graph of 6β Hydroxy Ethinyl Estradiol


Figure 8: Linearity Graph of Δ 9,11 Ethinyl Estradiol

Accuracy: Accuracy stock solution of all known impurities of Drospirenone and Ethinyl Estradiol was prepared and spiked into sample solution (triplicate preparation) to achieve the concentration of impurities in the range of about LOQ, 50 %, 100 %, 150 % of the working concentration of Drospirenone and Ethinyl Estradiol in diluted standard and for its known impurities with respect to specification limit and injected into the chromatograph. For all levels individual and mean recovery was found within acceptance criteria. Overall % RSD (n=9) of % recovery at all levels (except LOQ) was found within acceptance criteria. Results are reported in table 14.

1 4 5 1		ry or Lenniyr eo	ci autor im	parteco	
Level	6α Hydroxy EE	6β Hydroxy EE	6 keto EE	Δ9,11 EE	Δ6 EE
	118.8	112.1	106.5	108.2	109.8
LOQ	117.4	102.2	106.5	108.2	108.7
	116.3	105.5	101.1	108.2	108.7
	108.3	102.0	111.8	87.0	96.1
50 %	110.4	103.9	109.6	87.0	98.0
	110.6	102.0	111.8	87.0	98.0
	104.2	104.0	104.9	83.3	97.1
100 %	107.4	105.0	104.9	83.3	98.0
	105.3	104.9	104.9	83.3	94.1
	107.1	106.7	106.7	81.3	100.0
150 %	107.1	106.7	106.7	81.3	100.0
	107.1	106.7	106.7	75.0	100.0
Overall Mean	110.0	105.1	106.8	89.4	100.7
Overall SD	4.9	2.81	3.04	11.8	5.32
Overall % RSD	4.5	2.7	2.8	13.2	5.3

Table 14: % Recovery of Ethinyl estradiol Impurities

Stability of Analytical Solution: One sample solution (unspiked) was prepared as per methodology and other by spiking known impurities at specification levels. Injected diluted standard solution, sample solution (unspiked) and spiked sample solution initially and at different time intervals upto 48 hours by storing the sample solutions at 25°C. For each sample solution % w/w of known and total impurities were calculated and compared with the initial results. Absolute value of % difference between % w/w of each known impurity in initial sample and sample injected at each time interval with respect to initial value should be NMT 20.0 (for impurities below 1.0%) and NMT 10.0 (for impurities above 1.0%). Spiked sample solution was found stable up to 48 hours at room temperature.

CONCLUSION

The related substance method of analysis for Drospirenone and Ethinyl Estradiol Tablets (3.0mg/0.03mg) was validated for Specificity, LOD/LOQ Precision, Intermediate Precision (Ruggedness), Linearity, Accuracy and Stability of Analytical Solution. The method meets the acceptance criteria for all parameters. The validated method is Specific, Linear, Accurate, Precise, and Rugged for determination of related substances of Drospirenone and Ethinyl Estradiol in Drospirenone and Ethinyl Estradiol Tablets 3.0 mg/0.03 mg. Hence, this method can be used for routine analysis for the determination of related substances Drospirenone and Ethinyl Estradiol in Drospirenone and Ethinyl Estradiol Tablets 3.0 mg/0.03 mg.

ACKNOWLEDGEMENT

Authors are thankful to department of science, Sri Satya Sai University of technology and medical science, sehore and Laurus laboratories Ltd for providing the necessary facilities & guidance to carry out this research.

% w/w	Percentage weight by weight
w.r.t	With respect to
EE	Ethinylestradiol
Dil Std	Diluted Standard
RT	Retention time
RRT	Relative Retention time
SD	Standard Deviation
RSD	Relative Standard Deviation
NLT	Not Less Than
NMT	Not More Than
PPM	parts per million
PA	Purity Angle
РТ	Purity Threshold
MP	Method precision
IP	Intermediate precision

LIST OF ABBREVIATIONS

REFERENCES

- 1. Babu NB, Raju RR.(2011). Simultaneous analysis and validation of Risperidone and Drospirenone drugs in pharmaceutical dosage form. International Journal of Pharmaceutical Research and Bio-Science, 2011; 2(6):1638-1642.
- Gluck JA, Shek E. (1980). Determination of ethinylestradiol and norethisterone in an oral Contraceptive capsule by reversed-phase high performance liquid chromatography. Journal of Chromatographic Science, 1980; 18(2): 631-636.
- 3. Patel MG, Sagar GV.(2012). Development and validation of analytical method for simultaneous estimation of Ethinyl estradiol and cyproterone acetate in combined solid dosage form. International journal uni pharmacy and life sciences, 2(1): 611-622.
- 4. Philip AL, Derral OM, Richard WY. (1987). Determination of norgostimate and ethinyl estradiol in tablets by high-performance liquid chromatography. Journal of Pharmaceutical Science, 76(4): 44–47.
- 5. Prabhakar B, Deshpande SG. (1999). Simultaneous estimation of ethinylestradiol and levonorgestrel from transdermal patches by HPLC. Indian Journal of Pharmaceutical Science, 61(2):12-15.
- 6. Pradad G, Babu PS, Ramana MV. Validated RP-HPLC method for the estimation of drospirenone in formulation. International Journal of Research in Pharmaceutical and Biological Science, 2011; 2(1): 1341-1345.
- 7. Sweetman SC. Drospirenone,(2009). In editor. Martindale: The complete drug reference. London Pharmaceutical Press, 2095.
- 8. ICH,(1996). Q2B Validation of Analytical Procedure: Methodology International Conference on Harmonization, Geneva..

- 9. FDA, (2001). Food and Drug Administration. Center for Drug Evaluation and Research (CDER), Guidance for Industry "Bioanalytical Methods Validation for Human Studies". U.S. Department of Health and Human Services;.
- 10. International Conference on Harmonization Q1A (R2)(2009). Stability Testing of New Drug Substances and Products. 29. International Conference on Harmonization Q3A (R2) Impurities in New Drug Substances.

CITATION OF THIS ARTICLE

A Dash, N Jain. Efficient, Cost Effective Analytical Method Validation for Simultaneous Estimation of Related Substances in Ethinyl Estradiol & Drospirenone By HPLC in Combined Dosage Form. Bull. Env. Pharmacol. Life Sci., Vol 9[9] August 2020: 71-83