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ABSTRACT 

Fractional derivative operator is a useful theoretical discipline that is used by some of mathematicians for modeling and 
simulating many systems and processors based on the description of their properties . The main advantage of fractional 
derivatives in comparison with classical models with integer order is modeling many mechanical and electrical 
phenomena . One of these phenomena is the time fractional advection-diffusion-wave equation model (TFADE) .In this 
paper this modelwith damping with index 1 <γ< 2 is considered. By usingthe implicit numerical method, TFADE model 
convergenceis achieved considerably, That finally two numerical examples are expressed. 
Keywords: “Fractional differential equation, Fractional advection diffusion-wave, Implicit numerical method, Stability, 
Convergence”. 

  
INTRODUCTION 
In many studies of diffusion processes where the diffusion takes place in a highly non-homogeneous 
medium, numerous numerical experiments indicate that anomalous dispersion can not be described by 
the traditional second-order advection-dispersion equation (ADE) without extremely detailed information 
on the connectivity of high and low hydraulic conductivity sediments, it may even be that the ADE is 
insufficient at any level of detail [1]. For showing the details the differential equations with fractional 
derivatives can be used. Fractional-order differential equations has numerous applications in various 
sciences such as electronic. The fractional advection-dispersion equations have been recently treated by 
many authors. It is presented as a useful approach for the description of transport electronics in complex 
systems which are governed by anomalous diffusion and non-exponential relaxation patterns [2]. In this 
paper, the TFADE model with damping with index 1 <γ< 2 is considered. The effective implicit numerical 
method for this equation and its stability is discussed. Finally, two numerical examples are given. 
 
TFADE Model with Index 1 <γ< 2 
The time fractional advection-diffusion-wave equation with damping with index 1 < γ < 2 can be written as 
the following form [3]. 
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The parameters 1 0,  2 0,   V>0, D>0 are known parameters; V is the drift of the process, that is, the 

mean adjective velocity, D is the coefficient of dispersion. This partial differential equation with γ = 2 and 
V = 0 is called the telegraph equation which governs electrical transmission in a telegraph cable. It can also 
be Characterized as a fractional diffusion-wave equation (governs wave motion in a string) with a 
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damping effect due to the terms 1 <γ<2,V=0, 1

( , )c x t

t





in the Eq (1). Here we can see there is some 

initial directionality to the wave motion, but this rapidly disappears and the motion becomes completely 

random. If 1<γ< 2, V = 0, 1 0,  Eq (1) reduces to the fractional diffusion-wave equation. The most 

frequently encountered definition of fractional derivatives is based on Caputo derivatives as follow, [4].  
 
Definition. For functions c(x,t) given in the interval [0,T], the expressions: 
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is called time Caputo fractional derivative of order γ (m-1<γ<m). 
 
Implicit Numerical Method for the TFADE 

In this section, we propose an implicit numerical method, which can be used to solve the TFADE. Now we 

construct implicit numerical method using a new solution technique. 

 We define ,kt k  k=0,1,…,n; ,ix a ih  i=0,1,…,m; where 
T

n
  and 

( )b a
h

m


  are space and 

time step sizes, respectively. Assume that 
2( , ) ([ , ] [0, ]).c x t c a b T   

the Caputo time fractional derivative is discretized by using the following equation [5-6]: 
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Where 
1 1( 1) ,jb j j       j=0,1,2,…,n. 

The first order spatial derivative can be approximated by the backward difference scheme: 
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The first order temporal  derivative can be approximated by the backward difference scheme: 
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0 1 1     , there is a positive constant  such that: 

 k=1,2,…;
1( ) .kb k                                                                              (6)         

 
Proof [4]: 
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 Lemma is proved.                                                                                             ∎ 
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Let 
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
 the Eq (1) can be rewritten as: 
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where 0 1.  Hence, we can obtain the following difference scheme: 
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where 
1k k k

t i i ic c c   and 
1

1( , ).k
i i kf f x t

  Thus, the above second equation can be rewritten as: 
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Stability of the Implicit Numerical method for the TFADE 

In this section, we discuss the implicit numerical methods (9) with boundary conditions 0 0,k k
mc c   

k=0,1,2,…,n. 
 

Definition.A finite difference scheme is said to be stable for the norm .� � , if there exists two constants
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Therefore, the conclusion of the Lemma 2 is proved.  ∎                      

Theorem 1.Assume that ( 1, 2,..., 1; 1, 2,..., )k
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Further, we have   
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Therefore, the conclusion of the theorem is proved.                                                                                 ∎ 
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Theorem 3.The fractional implicit numerical method defined by (9) is unconditionally stable. 
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Convergens of the Implicit Numerical method for the TFADE 
Now we investigate the convergence of the implicit numerical methods (9). 
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Theorem 4.Let 
k
ic be the numerical solution computed by use of the implicit numerical methods (9), 

c(x,t) is the  
solution of the problem (1). Then there is a positive constant A, such that 
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( ), 0,
( , )

( ), 0, 0,

k
i i k

A h when
c c x t

A h when

 

  

  
  

   
Where i=1,2,…,m-1; k=1,2,…,n. 
Proof. Applying theorems 1 and 2
 
 
Numerical Results 
In order to demonstrate the effectiveness of our theoretical analysis, two examples is now presented.
 

Example 1. Consider the following advection

the initial and boundary conditions are given by:

 

( , ) ( , ) 1 ( , ) 1 ( , )

2 2 2 2 ( )

c x t c x t q c x t q c x t

t t x x

  

  

      
         

       

We take 
2 22( , ) 3[ ] .t tf x t e


 

where γ = 1.2 The exact solution of the equation is 

Comparison between exact and numerical solution is shown in figure 1. From Figure 1, it can be seen that 
the numerical solution is in excellent agreement with the exact solution.
 

Figure (1) Comparison between the exact solution and the numerical solution when T=1 with 

 
Example 2.Consider the following time fractional advection

index 1 2  . 

with the initial and boundary conditions given by:

( ,0) ( ),c x x

(0, ) 0,c t 
( , )

0,
c b t

x





0 .t T 

( , ) ( , ) ( , ) ( , )c x t c x t c x t c x t

t t x x





   
   

   
The computational results for different γ at T = 20 and x = 26 are shown in Figure 2 and Figure 3, 
respectively. 
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( ), 0, 0,
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A h when

 

  

  

   
 

2 the conclusion of the theorem is proved.                �  

In order to demonstrate the effectiveness of our theoretical analysis, two examples is now presented.

Consider the following advection-diffusion-wave model with damping with index 

the initial and boundary conditions are given by: 

( ,0) 0,c x  ( ,0) 0,tc x  0 1.x   

3(0, ) ,c t t 3(1, ) ,c t t e 0 1.t   

( , ) ( , ) 1 ( , ) 1 ( , )
( , ).

2 2 2 2 ( )

c x t c x t q c x t q c x t
D f x t

t t x x

  

  

      
         

       

( , ) 3[ ] .
(3 )

xt tf x t e





   

where γ = 1.2 The exact solution of the equation is 
3( , ) .xu x t t e  

etween exact and numerical solution is shown in figure 1. From Figure 1, it can be seen that 
the numerical solution is in excellent agreement with the exact solution. 

Comparison between the exact solution and the numerical solution when T=1 with 

example 1. 

Consider the following time fractional advection–diffusion-wave model with damping with 

the initial and boundary conditions given by: 

( ,0) ( ),c x x
( ,0)

( ),
c x

x
t







0 .x b   

0 .t T   

2

2

( , ) ( , ) ( , ) ( , )
.

c x t c x t c x t c x t

t t x x

   
   

   
              (12)

computational results for different γ at T = 20 and x = 26 are shown in Figure 2 and Figure 3, 
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In order to demonstrate the effectiveness of our theoretical analysis, two examples is now presented. 

wave model with damping with index 1 2  . 

( , ).D f x t                           (11) 

etween exact and numerical solution is shown in figure 1. From Figure 1, it can be seen that 

 
Comparison between the exact solution and the numerical solution when T=1 with 1.2  in 

wave model with damping with 

(12) 

computational results for different γ at T = 20 and x = 26 are shown in Figure 2 and Figure 3, 
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Figure (2) The snapshot of tracers whose transport is governed by the TFADE (11) when T=20 in 

Figure (3) The snapshot of tracers whose transport is governed by the TFADE (12) when x=26 in 

 
COCLUSIONS 
In this paper, effective numerical 
has been described. Finally, result is giv
equation can be used to simulate the regional
and technique discussed in this paper can also be applied to solve other kinds of fracti
differential equations. 
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