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ABSTRACT 
A biosensor is an analytical device which integrates a biological recognition element with a physical transducer to 
generate a measurable signal proportional to the concentration of the analyses.  A microbial biosensor consists of a 
transducer in conjunction with immobilized viable or non-viable microbial cells. Non-viable cells obtained after 
Permeable or whole cells containing periplasmic enzymes have mostly been used as an economical substitute for 
enzymes. Based on the sensing technique, recent reported microbial biosensors can be classified into two major groups: 
electrochemical microbial biosensors and optical microbial biosensors. Microbial biosensors based on light emission 
from luminescent bacteria are being applied as a sensitive, rapid and non-invasive assay in several biological systems. 
Bioluminescent bacteria are found in nature, their habitat ranging from marine (Vibrio fischeri) to terrestrial 
(Photorhabdus luminescens) environments. Bioluminescent whole cell biosensors have also been developed using 
genetically engineered microorganisms (GEM) for the monitoring of organic, pesticide and heavy metal contamination. 
The major application of microbial biosensors is in the environmental field. Currently, different microorganisms have 
been genetically engineered to respond to particular stresses or toxicity and are described in the literatures as biosensors 
for environmental stressesthough for them to be biosensors in these of this publication these organisms would have to be 
coupled to a suitable transducer. Based on the respiration of cells, Pseudomonas sp. entrapped polycarbonate membrane 
modified oxygen electrode was also applied to detect PNP which serves as the sole carbon and nitrogen source for the 
bacteria. By application of these biosensor in the marine environment the pollution in these ecosystems can be better 
manage. 
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INTRODUCTION 
Biosensors have been under development for over 35 years and research in this field has become very 
popular for 15 years. Electrochemical biosensors are the oldest of the breed, yet sensors for only one 
analyze (glucose) have achieved widespread commercial success at the retail level (1).What is a 
biosensor? In the early days (the 1960s and1970s), a sensor seemed to always be a probe of some sort, 
perhaps due to a vision inextricably linked to pH, ion selective or oxygen electrodes. If you follow the old 
literature, you will find biosensors that were called bio electrodes or enzyme electrodes or bio catalytic 
membrane electrodes (2). More recently, we have seen the definition broadened to include sensors 
buried within large automate instruments (3). There are some who see mass spectrometries, 
chromatography or electrophoresis as a viable sensor component (4).Many sensors used for biological 
purposes are therefore not biosensors, including those for temperature, pressure, electrocardiograms, 
pH, Ca2+, catecholamines and the like. By contrast, it is fair to consider surface Plasmon resonance (SPR) 
devices as utilizing biosensors (3, 5). Even labeled nanoparticles imbedded in the cytosol of individual 
cells that report optically are viable sensors. 

 
Main description of biosensors 
A biosensor is an analytical device which integrates a biological recognition element with a physical 
transducer to generate a measurable signal proportional to the concentration of the analyses (6, 7, 8, 9, 
10, 11, 12). In the general scheme of a biosensor, the biological recognition element responds to the 
target compound and the transducer converts the biological response to a detectable signal, which can be 
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measured electrochemically, optically, acoustically, mechanically, calorimetrically, or electronically, and 
then correlated with the analyze concentration (7, 8, 12, 13). Since Clark and Lyon developed the first 
biosensor for glucose detection in 1962, biosensors have been intensively studied and extensively utilized 
in various applications, ranging from public health and environmental monitoring to homeland security 
and food safety (1, 11, 14, 15, 16).Various biological recognition elements, including cofactors, enzymes, 
antibodies, microorganisms, organelles, tissues, and cells from higher organisms, have been used in the 
fabrication of biosensors (9). Among these biological elements, enzymes are the most widely used 
recognition element due to their unique specificity and sensitivity (17). However, the purification of 
enzyme is costly and time-consuming. In addition, the in vitro operating environment could result in a 
decrease of the enzyme activity (13). Microbes (e.g., algae, bacteria, and yeast) offer an alternative in the 
fabrication of biosensors because they can be massively produced through cell culturing. Also, compared 
to other cells from higher organism's such as plants, animals, and human beings, microbial cells are easier 
to be manipulated and have better viability and stability in vitro (13), which can greatly simplify the 
fabrication process and enhance the performance of biosensors. 
Microalgae usually proposed as bio receptors in sensors for water toxicity testing are not simple to 
handle and need to be appropriately sampled, diluted and immobilized on Alteration membranes before 
use. The species employed in this study, being a colonial microalga forming macroscopic mats, does not 
require any immobilization procedure, thus making easier and faster the preparation of each analysis. 
The proposed biosensor was quite sensitive toatrazine and showed intermediate sensitivity to carbonyl, 
while the detection of toxicity in the case of heavy metals was slow. This could be due either to biological 
factors (related to the adsorption characteristics of the cell walls as well as to specific pathways for 
sequestration, metabolization and release of the algal species used) or to chemical reasons such as the 
presence of natural completing agents and the high pH of the experimental medium. Another 
circumstance that may have resulted in decreased metal toxicity is the production of extra-cellular 
ligands by the alga, a pattern displayed by many cyanobacteria in response to metal stress (18, 19). Figure 
(1) shows the schematic representation of a biosensor. 

 
Figure 1. The schematic representation of a biosensor 

 
What is microbial biosensor?  
A microbial biosensor consists of a transducer in conjunction with immobilized viable or non-viable 
microbial cells. Non-viable cells obtained after Permeable or whole cells containing periplasmic enzymes 
have mostly been used as an economical substitute for enzymes. Viable cells make use of the respiratory 
and metabolic functions of the cell, the analyze to be monitored being either a substrate or an inhibitor of 
these processes. Bioluminescence-based microbial biosensors have also been developed using genetically 
engineered microorganisms constructed by fusing the lux gene with an inducible gene promoter for 
toxicity and bioavailability testing. Figure (2) show the schematic representation of a microbial biosensor 
(20). 
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Figure 2: The schematic representation of a microbial biosensor 

 
Classification of biosensors: 
Based on the sensing technique, recent reported microbial biosensors can be classified into two major 
groups: electrochemical microbial biosensors and optical microbial biosensors. Amperometry is the most 
widely used technique in electrochemical microbial biosensors. Amperometric microbial biosensors have 
been extensively exploited for environmental applications (17, 21, 22). However, this method is time 
consuming and not suitable for on-line monitoring (23). Other electrochemical microbial biosensors: The 
other recently published electrochemical microbial biosensors based on conductometric, potentiometric, 
voltammetric transducers as well as MFC-based biosensors. 
The conductometric microbial biosensor is attractive and appealing owing to its fast and sensitive 
response to the analyses. In this regard, a conductometric biosensor using C. vulgaris microalgaeas the 
bioreceptor was constructed to detect heavy metal ions and pesticides in water sample (24). 
Potentiometric microbial biosensors detect the amount of analyses by measuring the potential difference 
between the working electrode and the reference electrode separated by a selective membrane. Recently, 
a potentiometric biosensor based on the pH electrode modified by permeable P. aeruginosa was 
developed for selective and rapid detection of cephalosporin group of antibiotics (25). The hydrolysis of 
cephalosporin, due to the enzyme activity of the microbial layer, was accompanied by the production of 
protons near the pH electrode. The response came from the change of electric potential difference 
between the working electrode and the reference electrode. Another potentiometric biosensor for the 
identification of Beta-lactam residues in milk was also reported (26). These biosensors classified as 
follow: 
A) Fluorescent microbial biosensors: 
Based on the detection mode, fluorescent microbial biosensors can be divided into two categories: in vivo 
and in vitro. In vivo fluorescent microbial biosensor makes use of genetically engineered microorganisms 
with transcriptional fusion between an inducible promoter and a reporter gene encoding fluorescent 
protein. Green fluorescent protein (GFP), encoded by gfp gene, is among the most popular tools due to its 
attractive stability and sensitivity, and the fluorescence emitted by GFP can be conveniently detected by 
modern optical equipments with little or no damage to the host system(27). 
B) Bioluminescent microbial biosensors: 
A bioluminescent microbial biosensor measures the luminescence change emitted by living 
microorganisms. The luminescence change is, in fact, caused by lux gene-coded luciferase responding to 
the target analyze in a dose-dependent manner. The expression of lux gene in microorganisms can be 
controlled in either a constitutive or inducible manner. In the constitutive manner, the lux gene exists 
constitutively in the sensing microbe and the bioluminescence will change directly with the addition of 
chemicals of interest. Based on the act that the light intensity produced by the bacteria could be reduced 
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in the presence of toxic compounds, a Vibrio fischeri based bioluminescent microbial biosensor was 
developed for the rapid determination of the toxicity of some common environmental pollutants in a 
continuous flow system (28).A tetracycline (TC) luminescent whole-cell biosensor was developed for the 
rapid and specific TC residue assay in poultry muscle tissue with membrane permeabilizing agent 
polymyxin Band sensitizing agent EDTA (29). 
C) Sodium channel-based biosensors: 
The effect of PSP toxins (STX, gonyautoxin and tetrodotoxin) as sodium channel blockers has been 
exploited for the development of a tissue biosensor (30, 31). The authors covered a Na electrode with a 
frog bladder membrane, rich in sodium channels, and integrated into a flow cell. Investigating the 
transport of Na+ ions, they could detect the toxin presence. The toxicity levels of the toxins correlated 
with those determined with the mouse bioassay and, in the tetrodotoxin case, the biosensor was able to 
detect concentrations more than one order of magnitude below the limit of the detection of the bioassay. 
A particular case is the neuronal network biosensor developed by Kulagina et al. (32) which exploits the 
effect of STX and PbTx-3 on the extracellular action potentials. The biosensor was constructed by growing 
cultured mammalian neurons from spinal cord tissue of embryonic mice over a 64-site microelectrode 
array. Despite the distinct actions of these two toxins on the nervous tissue (STX inhibits propagation of 
action potentials and PbTx-3 enhances activation of thesodium channels), both inhibited mean spike rate 
of spinal cord neuronal networks. The detection limits for STX and PbTx-3were, respectively, 12 and 296 
pgmL−1 in buffer and 28 and430 pgmL−1 in 25-fold-diluted seawater. These extremely low values 
(approximately 30 000 times below the mouse bioassay detection limit for STX and 300 times below the 
regulatory limit for PbTx-3) are due to the extremely high sensitivity of the spinal cord networks. 
Additionally, the array responded to the presence of toxin-producing algae but not to the presence of non-
toxin isolates of the same algal genera. Although this generic approach cannot fully identify or quantify 
individual toxins, its application as screening tool is clearly justified. 
D) Enzyme inhibition-based biosensors: 
Hamada-Sato et al have recently developed a biosensor that combines the PP2A inhibition with the 
phosphate ion consumption by pyruvate oxidase (PyOx) into a flow injection analysis (FIA) system (33). 
However, the inhibition step is performed in a microtube and only the second enzyme is immobilized. 
Nevertheless, they measured OA with a detection limit of 0.1 ngmL−1, the biosensor being 50 times more 
sensitive than ELISA. 
Our group is currently working on the development of an electrochemical PP2A inhibition-based 
biosensor for the determination of OA. Colorimetric experiments with the enzyme immobilized by 
entrapment with poly (vinyl alcohol) azide-unitpendant water-soluble photopolymer (PVA-AWP) on 
screen printed carbon electrodes have demonstrated the viability of the approach and its applicability to 
the detection of the toxin in mussels. Our strategy is much simpler than the one mentioned above, since 
the enzyme inhibition is detected directly using appropriate PP2A substrates, electrochemically active 
only after the dephosphorylation by the enzyme (33). 
 
USE OF MICROBIAL CELLS AS BIOSENSING ELEMENTS 
Microbes have a number of advantages as biological sensing materials in the fabrication of biosensors. 
They are present ubiquitously and are able to metabolize a wide range of chemical compounds. 
Microorganisms have a great capacity to adapt to adverse conditions and to develop the ability to degrade 
new molecules with time. Microbes are also amenable for genetic modifications through mutation or 
through recombinant DNA technology and serve as an economical source of intracellular enzymes. (34, 
35) 
Selection of an appropriate culture is essential as the specific microbial species used in biosensors have 
characteristic substrate spectra which may or may not correspond well with the spectrum of compounds 
present in the sample. Adaptation of a microbe for induction of desirable metabolic pathways and uptake 
systems by cultivation in medium containing appropriate substrates may often be desirable (36, 37, 38). 
Microbial biosensors based on light emission from luminescent bacteria are being applied as a sensitive, 
rapid and non-invasive assay in several biological systems (39) (40). Bioluminescent bacteria are found in 
nature, their habitat ranging from marine (Vibrio fischeri) to terrestrial (Photorhabdus luminescens) 
environments. Bioluminescent whole cell biosensors have also been developed using genetically 
engineered microorganisms (GEM) for the monitoring of organic, pesticide and heavy metal 
contamination. The microorganisms used in these biosensors are typically produced with a constructed 
plasmid in which genes that code for luciferase are placed under the control of a promoter that recognizes 
the analyze of interest. When such microbes metabolize the organic pollutants, the genetic control 
mechanism also turns on the synthesis of luciferase, which produces light that can be detected by 
luminometers.(41) 
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Microbial biosensors for environmental applications 
The major application of microbial biosensors is in the environmental field (42, 43, 44, 45, 46, 47, 48, 49, 
50, 51). Microbial biosensors have been developed for assaying BOD, a value related to total content of 
organic materials in wastewater. BOD sensors take advantage of the high reaction rates of 
microorganisms interfaced to electrodes to measure the oxygen depletion rates. 
A microbial biosensor consisting of an oxygen microelectrode with microbial cells immobilized in 
polyvinyl alcohol has been fabricated for the measurement of bio available organic carbon in toxic 
sediments. The biosensor allows the estimation of available dissolved organic carbon in sediment profiles 
on a micro scale (52). Optical fiber (53) and calorimetric (54) based transducers have been used in BOD 
biosensors. 
Halogenated hydrocarbons used as pesticides, foaming agents, flame-retardants, pharmaceuticals and 
intermediates in the polymer production are one of the largest group of environmental pollutants. 
Microbial bio assays using immobilized cells of Rhodococcus strain containing alkyl-halide hydrolase has 
been described by Hutteret al. (55). The enzyme presents in the cell liberate shalogen ions from 
halogenated hydrocarbons. These studies were extended in the fabrication of a microbial sensor (56). The 
sensor can be stored in the dry form at 277 K for 1 week. More recently a gram-positive actinomycete like 
organism, exhibiting a broad spectrum for the dehalogenation of halogenated hydrocarbons, has shown 
better promise and may have potential in the fabrication of a broad specificity biosensor for halogenated 
hydrocarbons (57). 
 
Applications of microbial biosensors in food, fermentation and allied fields 
In recent years, the demand for quick and specific analytical tools for food and fermentation analysis has 
increased and is still expanding. Both industry and government health agencies require a wide array of 
different analytical methods in the quality assurance of food materials. Analysis is needed for monitoring 
nutritional parameters, food additives, food contaminants, microbial counts, shelf life assessment and 
other factory characteristics like smell and odor. A variety of sensors based on enzymes and antibodies 
(58, 59, 60, 61) as wells electronic noses (62, 63) have been reported. Microbial biosensors have also 
shown potential in food analysis (60). A number of reports are available on microbial biosensors for 
amino acids such as tyrosine (Aeromonasphenologenes), tryptophan (Ps. fluorescens) and glutamic acid (B. 
subtilis). (64) (65). Determination of phenylalanine is needed not only forthe process control of the 
phenylalanine fermentation but also for the neonatal diagnosis and dietary management of hyper 
phenylalaninaemia. A microbial biosensor based on Proteus wulgaris cells immobilized in Ca-alginate on 
an amperometric oxygen electrode has been reported (66). Phenylalanine deaminase present in the cell 
oxidises phenylalanine to phenylacetic acid. 
 
The importance of microbial biosensors in the marine environments: 
Recently appeared around shellfish (diarrheic, paralytic, amnesic, neurologic and azaspiracid) and fish 
(ciguatera and puffer) poisonings produced by different types of phycotoxins, making evident the urgent 
necessity of counting on appropriate detection technologies. With this purpose, several analysis methods 
(bioassays, chromatographic techniques, immune assays and enzyme inhibition-based assays) have been 
developed. However, easy-to-use, fast and low-cost devices, able to deal with complicated matrices, are 
still required. Biosensors offer themselves as promising bio tools, alternative and/or complementary to 
conventional analysis techniques, for fast, simple, cheap and reliable toxicity screening. 
A whole-cell sensor system that has been applied to the analysis of seawater utilizes the marine algae 
Spirulina subsalsa coupled to a Clark-type oxygen electrode in a flow through system to estimate pollution 
as indicated by variation in photosynthetic activity (67). Substances tested included chlorophenols, 
pesticides and surfactants. A similar system based on C. vulgaris and fiber optic signal detection was 
described for atrazine, simazine, isoproturon and diuron, with sub-ppb detection limits for photosystemII 
inhibitors (68). The advantage of whole cell sensors in this context is that they give information 
concerning bioavailability and potentially measure physiological responses, which are relevant to marine 
processes. The disadvantages that the obtained signals are generally less specific than those collected 
with enzymatic or affinity sensors and might have to be backed up by chemical analysis to resolve 
causative relationships between contaminants. 
A topic specific to marine monitoring is the pollutants introduced to the marine environment through 
produced water and drilling fluids from oil exploration platforms (69, 70, 71). Produced water can 
contain a cocktail of ingredients from hydrocarbons to antifoam agents, biocides, surfactants, corrosion 
inhibitors and emulsifiers, which can have acute or chronic toxic effects. Given the large range of 
chemicals potentially implicated, it is likely that an estimate of toxicity/risk posed using a complex and 
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preferably relevant biological system would be a useful tool in impact assessment. Currently, different 
microorganisms have been genetically engineered to respond to particular stresses or toxicity and are 
described in the literatures “biosensors for environmental stresses” (72, 73, 74, 75), though for them to 
be biosensors in these of this publication these organisms would have to be coupled to a suitable 
transducer. 
Another typically marine problem is the widespread contamination of water and sediments with 
antifouling agents, most notoriously in compounds such as tributyltin (TBT). Despite the fact that an 
outright ban agreed by the International Maritime Organization (IMO) is currently being implemented, 
TBT is still prevalent in many sediments and it quantification and removal is a problem that will face 
marine scientists and regulators for years to come (76). Among the best-documented effects of organotins 
on biota are direct toxicity, shell thickening in oysters, a decline in recruitment of their juvenile stages, 
and endocrine disruption. Given that TBT has been found to yield effects at concentrations in the low ng/l 
range (77), any detection methods would have to be extremely sensitive. A method based on a bacterial 
bioluminescence based bioassay for the specific detection of organotin compounds was reported (78). 
The detection limits were found to be 0.08 _M for TBT (26_g/l) and0.0001_M for DBT (0.03_g/l) with a 
linear range of one logarithm. The application of the bioassay to environmental samples is still under 
development and will depend on the contamination levels in relation to the detection limit of the bioassay 
for TBT and DBT. A flow-through sensor based on this assay with the bacteria immobilized within a chip 
and luminescent detection has recently been presented at the Eighth World Congress on Biosensors (79). 
Accumulation of the organotin within the immobilization matrixes assumed to be responsible for the 
improved detection limit of 1 nM TBT (325 ng/l). 
 
Trace metals 
Trace metals in the marine environment can have dual roles: in some cases they can act as essential 
limiting trace elements such as, for example, iron which has been found to limit algae growth in some 
parts of the ocean (80, 81, 82), in other cases they can present a pollution issue. A number of biosensors 
for metals have been described in the literature such as are combining luminescent bacterial sensors for 
the detection of zinc and chromate (83), a whole-cell sensor using the alkaline phosphates activity of the 
algae C.vulgaris and inter digitized conductometric electrodes for the detection of cadmium ions (84), an 
amperometric detection system based on urease inactivation for the screening of heavy metals such as 
mercury, copper, cadmium and tin in soil leachates (85), a catalytic cDNA sensor with fluorescent 
detection for lead (86) and many more. One factor of great importance in determining the fate and effect 
of metals in the environments their bioavailability and this is an issue that can, in certain instances, be 
addressed by the use of biosensors rather than chemical analysis in their detection. Two different sensor 
systems, one whole-cell and one protein-based, for metal bioavailability have been described (87) and 
some of the issues underlying the use of biosensors in assessing metal bioavailability have recently been 
discussed (88). Since the analysis and speciation of trace metals is a vast field in marine chemistry, the 
use of biosensors to obtain additional information appears a sensible route forward. 
 
Food safety 
Pollution of seafood through algal toxins is a concern that requires a comprehensive monitoring 
programmed. Paralytic shell fish poisons (saxitoxin, gonyautoxin and tetrodotoxin) act as sodium channel 
blockers. A tissue biosensor based on frog-bladder membrane and a sodium electrode has been 
developed for the sensitive detection of these toxins (89, 90). An electrochemical immune sensor 
forsaxitoxin and brevetoxin using glucose oxides as enzyme label has been described (91), as well as one 
for okadaic acid, brevetoxin, domoic acid and tetrodotoxin, based on a screen-printed electrode (SPE) 
system and alkaline phosphatase as enzymatic label (92). Okadaic acid, a diarrheic shellfish poison, was 
detected by chemi luminescent immune sensor in mussel homogenate (93) and also using a quartz crystal 
micro balances transducer for the immunoreaction (94). 
The biosensors can have a range of applications in marine science, some of which will complement 
chemical methods in providing information about interactions with biological material; some will have 
advantages in terms of field-applicability, automation or cost. 
 
What kinds of biosensors have been used for witch material?  
When the Nernstian biosensor response was used for calibration, up to 20,000 mgL−1 glucose standard 
was measured without sample dilution. BOD calibrations were accomplished using the two more 
commonly used standard artificial wastewaters, GGA and OECD solutions. The results showed that the 
potentiometric CO2 electrode was a useful transducer, allowing us to build, calibrate and characterize a 
BOD-like biosensor. Moreover, limitations present at oxygen amperometric electrode (customarily used 
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as BOD biosensor-based transducer) such as oxygen low solubility and its reduction at the cathode were 
avoided. 
Fluorescence can be detected at a longer wavelength after the excitation of the fluorescent substance at a 
shorter wavelength. Fluorescent biosensors have been widely applied in analytical chemistry due to their 
easy construction using standard molecular biology techniques (95). Fluorescence-based microbial 
biosensors can be divided into in vivo and in vitro type. For the in vivo type fluorescent microbial 
biosensor, the microorganisms are able to produce the fluorescent substance (e.g., green fluorescent 
protein) without the addition of an exogenous fluorescent element. For the in vitro type, the metabolic 
activity of microorganisms changes the environment surrounding them, resulting in the change of light 
emission due to the exogenous fluorescent element. 
Based on the respiratory activity of the bacteria, target analyze adapted P. putida has been used as the 
sensing element in the detection of other pollutants, such as BTE (benzene, toluene, ethylbenzene) (96) 
and 2,4-dichloro phenoxy acetic acid (97). 
Candida tropicalis (98) have been applied to the construction of ethanol whole-cell biosensors. Moreover, 
a G. oxidants-based amperometric biosensor with ferric cyanide serving as the mediator for the 
measurement of ethanol in FIA system was constructed (99). 

 
Marine microalgae, especially phycotoxin producers such as several species of dinoflagellates and 
diatoms, are one of the main problems in the exploitation of marine resources around the world. 
Phycotoxins are toxic compounds that enter into the food chain as components of the phytoplankton. 
Shellfish ingest these toxins and act as vectors, transmitting them to humans; and not only shellfish: 
several marine carnivores, such as some fish species and crabs, may also act as vectors. Phycotoxins 
accumulate in the digestive glands of shell fish without causing any toxic effect on it. However, when 

Material Kind of bacteria Substrate Reference 

Naphthalene Sphingomonas Sp. Or 
P.Fluorescens 

Hydrogel (135, 136) 

Acrylamide/Acrylic Acid/Acrylonitrile Brevibacterium Sp. Waste Waters (137) 

Acrylonitrile P. Pseudoalcaligenes Waste Waters (137, 138) 

Cyanide S. cerevisiae Cyanide (139) 

Nitrification A Microbial Sensor Waste Waters (140) 

Determination Of Phytotoxicity Synechococcus Sp. Isolated Chloroplasts Or 
Photosynthetic Membranes 

(141) 

Detecting Pollutant- Induced Effects Cyanobacterium Photoelectrochemical Cell (141) 

Sulphite Thiobacillus thiooxidans Foods (142, 143) 

Pharmaceutical B. Subitilits Enalaprilmaleate (Ema) (38) 

Highly Toxin Materials, Including 
Heavy Metals And Organic Chemicals 

Photobacterium 
phosphoreum 

Based On Heat Shock Gene-
Bioluminescence 

(144) 
(145) 
(146) 
(147) 

Biocides E. coli Biocides (148) 

GEM Biolumine Scene (E. 
coli) 

Environment (149) 

Cytotoxicity And Lysis S. cerevusiae Sense Chemicals (150) 

For The Measurement Of Sugars Dienococcus Food And Allied Industies (151) 

Treatment Of Mixed Radioactive 
Wastes 

D. radiodurans Radioactive Wastes (152) 
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humans consume a sufficient amount of contaminated seafood (phycotoxinsare odorless and tasteless), 
intoxication occurs. Table (1) shows the recently used biosensor. 
Table (1): Recently used biosensor 
 
Examples of Field application of biosensor 
Several genes encoding the OP-degrading enzyme have been identified and, with the benefit of molecular 
biology technology, applied in whole cell biosensors as the recognition element (9) (100). For example, 
genetically engineered p-nitrophenol (PNP)-degrader Pseudomonas putida JS444 and Moraxella sp., 
displaying organophosphorus hydrolase (OPH) activity, were constructed to selectively and sensitively 
detect paraoxon, methyl parathion, parathion, fenitrothion, and ethyl p-nitrophenol thiobenzene 
phosphonate (EPN) (101, 102, 103, 104, 105). 
A microbial BOD sensor quipped with an oxygen electrode and activated sludge was developed and 
successfully applied to the real-time monitoring of anaerobic reactors (106). Table (2) illustrates some 
biosensor that used in field. 

Table (2): some biosensor that used in the field 
Field application Bacteria Description Reference 

Determination of choline Arthrobacter globiformis Modifed oxygen electrodes (122) 

Determination of caffeine Pseudomonas alcaligenes Modifed oxygen electrodes (123) 

Analysis of genotoxicity Salmonella typhimurium 
TA1535 psk1002 

With a screen- printed (125) 

NA (nalidixic acid) and (IQ) E. coli RFMuu3/PBR2TTs and 
S.typhimurium ta1535psk1002 

Micro chip (126) 

Detect Cd2+ C.valgaris Detection limit was a slow as 
1ppbcd2+ 

(127) 

Detection urea Brevibacterium ammoniagenes In the ph sensitive polyanilineonapt (128) 

Detection of cephalosporin 
group of antibiotics 

P.aeroginosa Phelectord modified (129) 

Determination Cu2+ Circinella sp. Modified carbon paste electrod (131, 130) 

Detection of 
genotoxinmitomycin 

E. coli DH5a A miniature flow-through optical 
cell-based disposable fluorescent 

microbial 

(132) 

 
Based on the respiration of cells, Pseudomonas sp. entrapped polycarbonate membrane modified oxygen 
electrode was also applied to detect PNP which serves as the sole carbon and nitrogen source for the 
bacteria (107). In addition, Moraxella and P. putida modified glassy carbon electrodes (GCE) were utilized 
in the detection of E. coli in water based on the highly sensitive amperometric detection of PNP, a 
metabolic product of E. coli, with the addition of p-nitrophenyl-ˇ-d-glucuronide (108). 
The decrease of oxygen consumption rate due to the inhibition of bacterial respiration can also be utilized 
to detect highly toxic chemicals. According to this mechanism, photosynthetic microalgae Chlorella 
vulgaris modified screen-printed carbon electrode was reported for the continuous evaluation of the 
toxicity of atrazine and DCMU (109). 
Generally, the bacteria, which can uptake glucose, also possess the enzyme activity to metabolize other 
carbohydrates, such as galactose (110) (111), catechol (112), mannose, and xylose (110). Selective 
biosensors can still be developed for different sugars as long as the bacteria are adapted to the specific 
analyze in advance through the selective cultivation. The qualitative and quantitative detection of 
alcohols with high sensitivity, selectivity, and accuracy is required in many fields (113). Several 
microorganisms which can metabolize ethanol with the consumption of oxygen, such as G. oxydans (114, 
115), Pichia angusta (116), and Candida tropicalis (117) have been applied to the construction of ethanol 
whole-cell biosensors. Moreover, a G. oxydans based amperometric biosensor with ferricyanide serving as 
the mediator for the measurement of ethanol in FIA system was constructed (118). The experimental 
results showed that the response was very stable during 72 h of continuous monitoring and the detection 
limit was as low as 3.3M for ethanol. Another microbial biosensor based on G. oxydans for the selective 
determination of 1,3-propanediol (1,3-d) in the presence of glycerol (Gly) in the flow system was also 
reported (119). With the help of either ferricyanide or Osmium redox polymers, a good operational 
stability was demonstrated by 140 h of continuous operation with a selectivity ratio (1,3-d/Gly) of 118 or 
145, respectively. 
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Microbial biosensors are prospective in the determination of some compounds, which is costly and time-
consuming by using traditionally analytical method. S. cerevisiae coupled with anamperometric oxygen 
electrode was shown to be sensitive in the detection of thiamine (120) and L-lysine (121). Arthrobacter 
globiformis (122) and Pseudomonas alcaligenes (123) modified oxygen electrodes were reported for the 
determination of cholineand caffeine, respectively. A L-lactate selective biosensor was developed using 
permeabilized, genetically engineered Hansenul apolymorpha immobilized on a graphite electrode with 
phenazinemethosulphate as the free-diffusing redox mediator (124). Recently, a whole-cell biosensor on 
the basis of recombinant Salmonella typhimurium TA1535 pSK1002 coupled with a screen-printed gold 
electrode was designed for the amperometricanalysis of genotoxicity, and the result obtained therein was 
consistentwith that obtained by standard SOS-umu-test (125). In another recent study, E. coli 
RFM443/pBR2TTS and S. typhimurium TA1535 pSK1002 were integrated onto a microchip to fabricate 
novel microfluidic whole-cell biosensors for the detection of two genotoxic compounds, nalidixic acid 
(NA) and2-amino-3-methylimidazo4,5-f. quinoline (IQ), respectively (126). The detection limits of 
10_g/mL for NA and0.31_M for IQ were achieved. 
Demonstrate das OP compounds can inhibit the activity of acetylcholinesterase. A similar conductometric 
biosensor using C. vulgaris as the sensing element was fabricated to detect Cd2+ and the detection limit 
was as low as 1 ppb Cd2+ (127). Another conductometric biosensor was constructed by entrapping 
lyophilized Brevibacterium ammoniagenes in the pH sensitive polyaniline on a Pt twin wire electrode to 
detect urea (128). The catabolic activity of bacteria produced ammonia from urea, thereby causing an 
increase of the local pH. The variation pH resulted in the change the resistivity change of the CP, which 
was detected by the working electrode. 
Recently, a potentiometric biosensor based on the pH electrode modified by permeabilized P. aeruginosa 
was developed for selective and rapid detection of cephalosporin group of antibiotics (129). The 
hydrolysis of cephalosporin, due to the enzyme activity of the microbial layer, was accompanied by the 
production of protons near the pH electrode. The response came from the change of electric potential 
difference between the working electrode and the reference electrode. Another potentiometric biosensor 
for the identification of Beta-lactam residues in milk was also reported (26). 
Recently, a voltammetric microbial biosensor for the determination of Cu2+was reported (130). The 
biosensor was based on Circinella sp. modified carbon paste electrode. Cu2+ was pre concentrated on the 
electrode and measured by CV, which was the interpreted as peak current to determine the concentration 
of the target analyze. The detection limit of this biosensor could be a slow as 54nM Cu2+. Furthermore, a 
modified stripping voltammetry was proposed by taking advantage of both bacterial adsorption on a 
mercury surface and metal fixation capacity on A. ferrooxidans (131). 
Martineau et al. reported a miniature flow-through optical cell-based disposable fluorescent microbial 
biosensor for the detection of genotoxinmitomycin C (132). 
Another bioluminescent microbial biosensor based on luxCDABE marked Acinetobacter sp. bacterium was 
used to assay the toxicity of wastewater contaminated by heavy metals (133). In addition, a 
bioluminescent biosensor with P. fluorescensHK44 pUTK21 recognition element was designed to reflect 
the available fraction of naphthalene in soil since there was a linear relationship between the 
luminescence from microbes and the naphthalene concentration (134). 
 
CONCLUSION 
All literature indicated that biosensor can be applied in the marine environment especially for detection 
of pollutant such as: Crude oil, Heavy metal, insecticide and etc. Between all described biosensor the 
biosensor that work based on bioluminescence better applied in the marine environments. 
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