Molluscan Diversity of Bhavanapadu Mangroves, Northeast Coast of Andhra Pradesh, India

Joseph Uday Ranjan T.¹ and Dr. Ramesh Babu K.²
Department of Marine Living Resources, Andhra University, Visakhapatnam-530003, Andhra Pradesh, India.
E-mail: ranjan.uday@gmail.com

ABSTRACT
The Bhavanapadu mangroves are located (Long: 18° 33’ 52'' to 18° 32’ 11'' N; Lat: 84° 21’ 26” to 84° 18’ 22” E) on the Bay of Bengal North East Coast of Andhra Pradesh. Survey has been made on molluscan fauna in the mangroves along the Tekkali Creek upto Kothalingudu. 19 species of molluscs of which 15 gastropods and four bivalves were recorded.

Keywords: Bhavanapadu, Mangrove, Malacoauna.

INTRODUCTION
Mangroves are salt-tolerant plants inhabiting the tropical and subtropical estuarine regions. They are ranked among the most productive ecosystem of the earth [1]. Mangrove ecosystem provides an ideal nursery and breeding grounds to most of the marine and brackish water fish and shellfish. Indian mangroves represent a rich diversity of soil dwelling organisms which include micro, meio and macro forms [2]. Mangrove derived detritus is an important food source for benthic food webs [3,4]. Mangrove molluscs occupy at all the levels of food web as herbivores, predators, detrioires and filter feeders with horizontal and vertical distribution and play an important role in the productivity of mangroves [5]. Gastropods and bivalves are two important molluscan groups in mangrove areas. The present survey has been made to procure an inventory of molluscs in unexplored Bhavanapadu mangroves.

MATERIALS AND METHODS
Study area:
Bhavanapadu mangroves (Long: 18° 33’ 52” to 18° 32’ 11” N; Lat: 84° 21’ 26” E to 84° 18’ 22” E) have been situated on the North East coast of Andhra Pradesh, adjoining the Bay of Bengal (Fig.1). It consists of backwaters, adjacent salt pans and aquaculture farms covering an approximate extent of mangrove marshy land of 2000 ha which comes under revenue land. Many marine fisherman habitations have been located in the vicinity. Mangroves are dwarf, mostly dominated by Avicennia marina on the right and left banks. Eight species of halophytes and two sea grasses have already been reported [6].

Collection of samples:
Field survey was taken up in the mangrove area from April, 2012 to December, 2013. The mangrove molluscs were collected by hand picking and by digging the substratum [7]. The arboreal forms (crawlers) were gathered from the stems, roots and other parts of the vertically growing mangrove plants [8]. The recorded specimens were sampled from mud banks, mud flats, mangroves, sand-mud swamps, wooden posts, rocky boulders etc. For correct identification, standard keys were followed [9, 10, 11, 12].

RESULTS AND DISCUSSIONS
Gastropods and bivalves are the two major classes of molluscs occupying mangrove areas. A total of 19 species of molluscs representing 10 orders, 9 families and 13 genera were recorded from the mangroves (Table 1; Fig. 2 to 20). The mangrove molluscs have been divided into three categories (1) arboreal, those
who live attached to stem and roots of mangrove vegetation (2) epifauna, those lying on the mud (3) infauna, those burying in the mud and some live in overlapping habitat [13, 14, 15]. The rich diversity of mangrove periwinkles (*Littoraria* sp.) and the common nerites have been densely found on the leaves, trunks and pneumatophores as well as on the stilt roots of mangrove plants. The crawling *Littoraria* sp., were recorded on the mangrove vegetation up to 1 meter height. *Assiminea nitida*, *Cassidula nucleus*, *Cerithidea obtusa*, *Haminoea sp.*, *Onchidium sp.*, have been found on the mud as well as on the stem and root system of mangroves. *Cerithidea cingulata* and *Telescopium telescopium* are two dominant mud crawlers. Gastropods graze on decomposing fallen leaves and also consume the mud mainly formed by mangrove litter [16, 17, 18].

Table 1: List of gastropods and bivalves recorded in Bhavanapadu mangroves

<table>
<thead>
<tr>
<th>No.</th>
<th>Order</th>
<th>Family</th>
<th>Scientific name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Littorinimorpha</td>
<td>Assiminidae</td>
<td>Assiminea nitida (Pease, 1865)</td>
</tr>
<tr>
<td>2</td>
<td>Caenogastropoda</td>
<td>Potamiididae</td>
<td>Cerithidea cingulata (Gmelin, 1791)</td>
</tr>
<tr>
<td>3</td>
<td>Caenogastropoda</td>
<td>Potamiididae</td>
<td>Cerithidea obtusa (Lamarck, 1822)</td>
</tr>
<tr>
<td>4</td>
<td>Caenogastropoda</td>
<td>Potamiididae</td>
<td>Telescopium telescopium (Linnaeus, 1758)</td>
</tr>
<tr>
<td>5</td>
<td>Littorinimorpha</td>
<td>Littorinidae</td>
<td>Littoraria melanostoma (Gray, 1839)</td>
</tr>
<tr>
<td>6</td>
<td>Littorinimorpha</td>
<td>Littorinidae</td>
<td>Littoraria carinifera (Menke, 1830)</td>
</tr>
<tr>
<td>7</td>
<td>Littorinimorpha</td>
<td>Littorinidae</td>
<td>Littoraria angulifera (Lamarck, 1822)</td>
</tr>
<tr>
<td>8</td>
<td>Littorinimorpha</td>
<td>Littorinidae</td>
<td>Littoraria pallescens (Philippi, 1846)</td>
</tr>
<tr>
<td>9</td>
<td>Littorinimorpha</td>
<td>Littorinidae</td>
<td>Littoraria conica (Philippi, 1846)</td>
</tr>
<tr>
<td>10</td>
<td>Cycloneritimorpha</td>
<td>Neritidae</td>
<td>Clithon ovalaniensis (Lesson, 1831)</td>
</tr>
<tr>
<td>11</td>
<td>Cycloneritimorpha</td>
<td>Neritidae</td>
<td>Neritina violacea (Gmelin, 1791)</td>
</tr>
<tr>
<td>12</td>
<td>Cycloneritimorpha</td>
<td>Neritidae</td>
<td>Nerita histrio (Linnaeus, 1758)</td>
</tr>
<tr>
<td>13</td>
<td>Cephalaspedia</td>
<td>Haminoeidae</td>
<td>Haminoea sp. (Carrington, 1830)</td>
</tr>
<tr>
<td>14</td>
<td>Bassomatophora</td>
<td>Ellobium</td>
<td>Cassidula nucleus (Gmelin, 1791)</td>
</tr>
<tr>
<td>15</td>
<td>Systelommatophora</td>
<td>Onchiidiidae</td>
<td>Onchidium sp. (Agassiz, 1846)</td>
</tr>
<tr>
<td>16</td>
<td>Arcoida</td>
<td>Arcidae</td>
<td>Anadara granosa (Linnaeus, 1758)</td>
</tr>
<tr>
<td>17</td>
<td>Eulamellibranchiata</td>
<td>Veneridae</td>
<td>Meretrix meretrix (Linnaeus, 1758)</td>
</tr>
<tr>
<td>18</td>
<td>Mytiloida</td>
<td>Mytilidae</td>
<td>Perna viridis (Linnaeus, 1758)</td>
</tr>
<tr>
<td>19</td>
<td>Ostreoida</td>
<td>Ostreidae</td>
<td>Crassostrea madrasensis (Preston, 1916)</td>
</tr>
</tbody>
</table>

Fig.1: General map of the study area
Fig. 2: Assiminea nitida
Fig. 3: Cerithidea cingulata

Fig. 4: Cerithidea obtuse
Fig. 5: Telescopium telescopium

Fig. 6: Littoraria melanostoma
Fig. 7: Littoraria carnifera

Fig. 8: Littoraria angulifera
Fig. 9: Littoraria pallescens
Ranjan and Babu

Fig. 10: Littoraria conica
Fig. 11: Clithon oualaniensis

Fig. 12: Neritina violacea
Fig. 13: Nerita histrio

Fig. 14: Haminoea sp.
Fig. 15: Cassidula nucleus

Fig. 16: Onchidium sp.
Fig. 17: Anadara granosa
Bivalve molluscs have been found attached to wooden jetties, dykes, wooden posts and even to the shells when a suitable substratum is not available. The oyster, *Crassostrea madrasensis*, the mussel *Perna viridis*, the clam *Meretrix meretrix* and the blood cockle *Anadora granosa* have been recorded as beds along the banks of the Creek. These edible bivalves are abundant in the local estuaries [19]. Maximum number of species has been observed from mud flats of the mangroves. Oysters in particular are seen attached to calcareous substratum and also seen attached to other structures like the gaps of the cracks and rocky boulders along the banks in addition to various calcareous hard materials lying in the muddy substratum. *M. meretrix* and *A. granosa* have been found buried in the soft mud. *Perna viridis* was found attached to fibre like roots and root nodules of mangrove plants with their distribution restricted to mouth region and harbour area. *C. madrasensis* has been also found more in the middle of the Creek by forming beds. Molluscs dwell on the sediment surface or reside in burrows, others live on pneumatophores and lower tree trunks or prop-roots, burrow in decaying wood, or can even be found in the tree canopies [8, 20]. In India numerous explorations have been covered so far, out of which 6 species reported from Nuvvalarevu backwaters [21], 9 from Krishna estuary [22], 10 from Pitchavaram mangroves [23], 11 from Godavari estuary [24], 13 species from Vellar estuary [25], 20 from Mahanadi estuary [26], not more than 100 species of mangrove associated molluscs were reported [27] and hundred species from Andaman and Nicobar islands [28].

CONCLUSION

In the present survey 19 species of molluscs were recorded on the mud banks, mud flats, mangrove forest, sandy muddy area and swamps in Bhavanapadu mangroves. Predominant occurrence of *Cerithidea cingulata* and *Telescopium tescopium* was observed on the mud banks and mud flats. The distributions of mangrove molluscs are threatened with various anthropogenic pressures, nothing much is known about the fate of the diversity of molluscs associated with these mangroves. Mangrove molluscs add up to food for other faunal species in higher trophic levels, including humans. In this aspect the mangrove molluscs along the densely populated Indian coasts, require much more attention from conservation biologists.
ACKNOWLEDGEMENTS
The authors are grateful to the UGC for granting Maulana Azad National Fellowship to Mr. Joseph Uday Ranjan T and Head, Department of Marine Living Resources, Andhra University for the facilities.

REFERENCES
Ranjan and Babu

CITATION OF THIS ARTICLE