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ABSTRACT 
The whole world is facing severe crisis due to SARS-COV-2 or COVID-19 pandemic. This review highlights the basic 
structural details of coronaviruses along with special reference of novel coronavirus that is SARS-COV-2 or COVID-19. 
They are enveloped, non-segmented, positive sense RNA viruses.  The genome is packed inside a helical capsid formed by 
the nucleocapsid protein (N) and further surrounded by an envelope.  Coronaviruses have four main structural proteins: 
Spike (S), Membrane (M), Envelope (E) and Nucleocapsid (N). Hemagglutinin-esterase (HE) is minor structural protein 
present in a subset of beta-coronaviruses. In between the S-E-M-N genes, coronaviruses encode species-specific accessory 
proteins. A notable difference was found in the longer spike protein of COVID-19 when compared with the bat SARS-like 
coronaviruses and SARS-CoV. COVID-19 appears to have no HE gene same as SARS-CoV and MERS-CoV. 
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INTRODUCTION 
The whole world is facing severe crisis due to SARS-COV-2 or COVID-19 pandemic. According to World 
Health Organization to date (13 April 2020) there are more than 1. 8 million confirmed cases of COVID-19 
and more than 113 675 deaths. On the basis of genomic structures and phylogenetic relationship, the 
subfamily Coronavirinae comprises of four genera Alphacoronavirus, Betacoronavirus, 
Gammacoronavirus and Deltacoronavirus [1]. There are seven human coronaviruses which cause mild 
respiratory illness (229 E, NL63, OC43 and HKU1) to severe respiratory syndrome (MERS-COV, SARS-COV 
and SARS-COV-2 or COVID-19). The current COVID-19 is the newest addition to this family that infects 
humans and appears to share the same cellular receptor as SARS-CoV, namely the ACE2 (angiotensin 
converting enzyme 2) [2]. This review highlights the basic structural details of coronaviruses along with 
special reference of novel coronavirus that is SARS-COV-2 or COVID-19. 
 
GENERAL DETAILS OF STRUCTURAL PROTEINS OF CORONAVIRUSES  
They are enveloped, non-segmented, positive sense RNA viruses. They have the largest genome among all 
RNA viruses, typically ranging from 27 to 32 kb. The genome is packed inside a helical capsid formed by 
the nucleocapsid protein (N) and further surrounded by an envelope.  
The COVID-19 in China is closely related to bat SARS-like Betacoronavirus [3]. The lengths of the COVID-
19 encoded proteins were found to be almost similar among COVID-19 and bat SARS-like coronaviruses 
[3]. 
Coronaviruses have four main structural proteins (Fig.1 and Fig.2): 

(1) Spike (S) 
(2) Membrane (M) 
(3) Envelope (E) 
(4) Nucleocapsid (N) 
Minor structural proteins: 
(5) Hemagglutinin-esterase (HE)  
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(1) Spike (S): Distinctive structure on the surface of the virus [4], [5] and mediates attachment of the 
host receptors [6]. The spike glycoproteins composed of two subunits (S1 and S2). Homotrimers 
of S proteins compose the spikes on the viral surface, guiding the link to host receptors [7]. In 
some Coronaviruses, the expression of S at the cell membrane can also mediate cell-cell fusion 
between infected and adjacent, uninfected cells. This formation of giant, multinucleated cells, or 
syncytia, has been proposed as a strategy to allow direct spreading of the virus between cells, 
subverting virus-neutralising antibodies [8], [9], [10]. A notable difference was found in the 
longer spike protein of COVID-19 when compared with the bat SARS-like coronaviruses and 
SARS-CoV [3]. S protein cleaved into two subunits S1 and S2 where S1 comprises of minimal 
receptor-binding domain (270–510) that helps in receptor binding and S2 facilitates membrane 
fusion [11]. Electron microscopy studies revealed that the spike is a clove-shaped trimer with 
three S1 heads and a trimeric S2 stalk [12], [13], [4], [14]. The S1 domain of COVID-19 spike 
glycoprotein potentially interacts with the human CD26, a key immunoregulatory factor for 
hijacking and virulence [15]. S protein is crucial for receptor binding, membrane fusion, 
internalization of the virus, tissue tropism and host range and therefore is the crucial targets for 
vaccine development [7]. Spike glycoprotein of COVID-19 exhibits higher sequence similarity 
with 12.8% of difference with SARS-CoV [16].  

 

 
Fig.1 Image shows the major elements including the Spike (S protein), M protein, viral envelope 

(E protein), HE protein and helical RNA (N protein) of coronaviruses. 
Source: https://www.scientificanimations.com/wiki-images/ 

 
Fig.2 Image reveals ultrastructural morphology exhibited by coronaviruses (COVID-19). 

Source: https://health.mil/News/Articles/2020/01/24/Coronavirus?type=Presentations 
 

Satish K. Pathak 
 

https://www.scientificanimations.com/wiki-images/
https://health.mil/News/Articles/2020/01/24/Coronavirus?type=Presentations


BEPLS Vol  9 [6] May 2020               36 | P a g e            ©2020 AELS, INDIA 

(2)  Membrane (M): It is most abundant structural protein in the virion and is thought to give the 
virion its shape [17], [18]. Recent studies suggest the M protein exists as a dimer in the virion, 
and may adopt two different conformations allowing it to promote membrane curvature as well 
as bind to the nucleocapsid [19]. The M protein comprises of short N-terminal glycosylated 
ectodomain with three transmembrane domains (TM) and a long C-terminal CT domain [20]. It is 
also regarded as the central organiser of coronavirus assembly, interacting with all other major 
coronaviral structural proteins [21]. 

(3) Envelope (E): It is found in small quantities within the virion. E-protein from coronaviruses are 
highly divergent but have a common architecture [22]. E-protein facilitates assembly and release 
of the virus but also has other functions (such as ion channel activity in SARS-CoV E-protein is 
not required for viral replication but is required for pathogenesis [8]. The E protein is the 
smallest of the major structural proteins, but also the most enigmatic. During the replication 
cycle, E is abundantly expressed inside the infected cell, but only a small portion is incorporated 
into the virion envelope [23]. Recombinant coronaviruses have lacking E exhibit significantly 
reduced viral titres, crippled viral maturation, or yield propagation incompetent progeny, 
demonstrating the importance of E in virus production and maturation [24], [25], [26], [27], [28]. 
The coronavirus E protein is unique in that it can form homotypic interactions, which allows it to 
oligomerise and generate an ion-channel protein known as a viroporin [29], [30]. 

(4) Nucleocapsid (N): Only protein present in nucleocapsid. N protein binds the viral genome in a 
beads-on-a-string type conformation [8]. Although N is largely involved in processes relating to 
the viral genome, it is also involved in other aspects of the coronavirus replication cycle and the 
host cellular response to viral infection [31]. Interestingly, localisation of N to the endoplasmic 
reticulum (ER)-Golgi region has proposed a function for it in assembly and budding [32], [33]. 
However, transient expression of N was shown to substantially increase the production of virus-
like particles (VLPs) in some coronaviruses, suggesting that it might not be required for envelope 
formation, but for complete virion formation instead [34], [35],[36], [37].  
These four proteins occur in the order S-E-M-N in every known coronavirus lineage [38]. The M 
and E proteins are required for virus morphogenesis, assembly and budding. S glycoprotein is a 
type 1 fusion viral protein that comprises of two heptad repeat regions known as HR-C and HR-N 
which forms the coiled-coil structures surrounded by protein ectodomain [39].  

(5) Hemagglutinin-esterase (HE): It is present in a subset of beta-coronaviruses. The protein acts 
as a hemagglutinin, binds sialic acids on surface glycoproteins and contains acetyl-esterase 
activity [40]. These activities are thought to enhance S protein–mediated cell entry and virus 
spread through the mucosa [8]. COVID-19 appears to have no HE gene same as SARS-CoV and 
MERS-CoV [41].  
Accessory proteins or non structural proteins (NSPs): In between the S-E-M-N genes, 
coronaviruses encode species-specific accessory proteins, many of which appear to be 
incorporated in virions at low levels, ranging from one accessory in alpha coronaviruses 
including human coronavirus NL63 [42] to a predicted nine accessories in gamma  coronavirus 
HKU22 [38]. The genomic position of these accessory genes varies, with accessories encoded 
before S in some beta coronaviruses and gamma coronaviruses and commonly in 
deltacoronaviruses [43]. 
 

FUTURE PERSPECTIVES AND CONCLUSION  
The Structural Proteins of Coronaviruses with Special Reference of SARS-COV-2 or COVID-19 will help 
better understanding of infection, transmission, pathogenesis of Viruses.  Development of Vaccine for 
SARS-COV-2 or COVID-19 is strongly needed today to control the infection, as S (spike) protein is crucial 
binding of receptor, membrane fusion, internalization of the virus, tissue tropism and host range and 
therefore is the crucial targets for vaccine development. It is hoped that present review will help 
researcher engaged in study of different strains of Coronaviruses along with SARS-COV-2 or COVID-19. 
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