Bulletin of Environment, Pharmacology and Life Sciences

Bull. Env. Pharmacol. Life Sci., Vol 9[6] May 2020 : 72-79 ©2020 Academy for Environment and Life Sciences, India Online ISSN 2277-1808 Journal's URL:http://www.bepls.com CODEN: BEPLAD Global Impact Factor 0.876 Universal Impact Factor 0.9804 NAAS Rating 4.95

REVIEW ARTICLE

Potential Herbs for Upper Respiratory Illness and their Current Utility

Rashmi Sahu¹, Manju Rani², Kamal Shah³, Nagendra Singh Chauhan⁴, Prashant Kumar Gupta¹

 Department of Kaumarbhritya, Shri NPA Govt. Ayurved College, Raipur, C.G. India
Chaudhary Brahm Prakash Ayurveda Charak Sansthan, New Delhi. India
GLA University,Institute of Pharmaceutical Research, Mathura-281406 (U.P.) India
Drugs Testing Laboratory Avam Anusandhan Kendra, Raipur (CG), India Email: prashantgupta27@gmail.com

ABSTRACT

Current health crisis need a holistic approach to counter. Ayurveda is one of the oldest system for health management. History reveals, India had managed pandemics through natural ways of treatment. Author has attempted a preliminary compilation of in vitro, in vivo and clinical studies related to commonly used Ayurveda herbs or formulations for upper respiratory ailments. Author suggest compiled remedies as a prophylactic, preventive or rehabilitative measure to counter upper respiratory tract symptoms of common origin during current health crisis. **Keywords**: Ayurveda, upper respiratory tract, Covid19, clinical studies, in vitro, in vivo, herbs, plants

Received 21.04.2020

Revised 05.05.2020

Accepted 24.05.2020

INTRODUCTION

COVID-19 Disease is a pandemic originated in China and spread globally. Single strand RNA virus is responsible for Covid-19 isolated from different animal species having potential to cross species barriers and can cause acute to severe illness in humans [1]. Seven human CoVs(HCoVs) stains have been identified which can infect humans. These viruses are responsible for about 5% to 10% of acute respiratory infections [2]. Patients usually presents with symptoms of upper respiratory tract viral infections, including mild fever, cough (dry), sore throat, nasal congestion, malaise, headache, muscle pain. Loss of taste and/or smell, diarrhea has also recognized as presenting complains of Covid-19 [3]. Although extra-pulmonary symptoms are not certain, mostly originating from the gastrointestinal tract, hepatic and neurological disease.

Ayurveda has legacy of thousands of years and rich repertoire of single herbs, poly-herbal formulations, and herbo-minerals known to have potential action on respiratory tract infections. In this scenario of drug resistance for some acute and chronic infection as well as no specific treatment available for Covid-19, Ayurveda may emerge as a probable solution. Ayurveda prevents ageing increases longevity and offer resistance to disease by modulating the immune system [4]. In present review author has attempted to compile studies related to potential herbs, formulations which holds promising effects in upper respiratory tract infections and anti-inflammatory properties.

HERBS

Adhatoda vasika

Adhatoda vasika (*Vasa*) is a commonly available plant throughout India belonging to family Acanthaceae. It is under medicinal use since thousands years in traditional and folk medicine. Ethanolic extract of *Adhatoda vasica* is known to have antitussive activity [5]. It is traditionally used for wound healing, skin disorder, upper respiratory disorders [6]. Ethyl acetate extract and methanolic extract of *Adhatoda vasica* inhibits the cough reflex [7]. Methanolic extract of *Adhatoda vasica* reduces the induced inflammation in hen's egg exhibiting anti-inflammatory effect [8]. In a randomized, double blind clinical trial of Kanjhang oral solution in non-complicated acute respiratory infections significant reduced the frequency of

coughing, efficacy of mucous discharge in the respiratory tract and degree of nasal congestion suggestive of antitussive and anti-inflammatory properties [9]. *Vasa avaleha* (a Ayurveda formulation predominantly having *Adhatoda vasica*) and granules showed mild to moderate improvement in the symptoms of bronchial asthma in a double blind clinical trial [10].

Inula racemosa (Pushkarmool)

*Pushkarmool (Inula racemosa)*belongs to family Asteraceae and found in south east Asia and Europe. Traditionally it is used to cure fever, swelling, anorexia, chest pain (*Parshwashool*) and breathlessness. Many polyherbal formulations therapeutically used for cardiovascular disorders, hepatic andspleen aliments have *Inula racemosa* as main ingredient [11]. Petroleum ether extract showed anti-asthmatic activity and significant antagonist effect on histamine induced contraction, and protection against mast cell degranulation inan *in vivo* study done in wistar rats. Anti histaminic activity of *Inula racemosa* was also recorded in the goat tracheal chain [12]. Details of studies are summarised in Table 1.

Glycyrrhiza glabra (Yashtimadhu)

Glycyrrhiza glabra is the member of family *Fabaceae* having more than 30 species in genus *glycyrrhiza* distributed all over the world. Commercially it is cultivated in northern part of India and Afaganistan [13]. *Glycyrrhiza glabra* is considered as a traditional drug for manyminor to major aliments and acts as ulcer protective, purgative, demulcent, expectorant, antitussiveand so on [14]. Ethanolic extract of *Glycyrrhiza glabra* showed antitussive effect and inhibits the cough reflex in albino mice [15]. Water extracted polymer of *Glycyrrhiza glabra* possess good antitussive activity due to presence of arbinogalactan in guinea pigs [16]. Crude extract of *licorice* compounds i.e. liquiritin apioside, liquiritin, liquiritingenin exhibits potent antitussive activity in male ICR mice [17]. Double blind randomized clinical trial on ASMATUS having *Glycyrrhiza glabra* reduced the frequency of cough and night awakening in 46 asthmatic patients [18].

Clerodendron serratum (Bharangi)

Clerodendrum serratum belongs to family *Lamiaceae*. This plant is native to East India distributed in lower *himalayas*, Bihar, West Bengal, and Sri Lanka. It is diversely used for bodyache, ulcers, wounds, opthalamia, rheumatism, asthma, bronchitis and tuberculosis in Ayurveda [19]. It is chiefly known for its action on respiratory system. *Clerodendrum serratum*has a potent antihistaminic action due to inhibition of inflammatory mediators like serotonin, histamine and prostaglandin through cyclo-oxygenase inhibition [20]. Icosahydrapicenic acid (IHPA) extracted from ethanolic extract inhibits the histamines in goat tracheal chain preparation [21]. In patients of bronchial asthma (*Tamak shwasa*), *Clerodendrum serratum root extract* (*Bharangi mool arka*) nebulization significantly reduced breathlessness, wheezing, difficulty in speech, cough, sputum production, chest tightness [22]. Details are summarised in table1. *Piper longum* (*Pippali*).

Piper longum belongs to family *Piperaceae* and habitat mainly to tropical and subtropical regions [23]. It posseshepato-protective, anti inflammatory, antioxidant, analgesic, anti microbial, and antiplatelet activity [24]. Different extracts of *Piper longum (Pippali)* showed potent antitussive activity and significantly suppressed the cough reflex in chemically induced cough in guinea pigs [25]. *Piper longum* also possess anti histaminic properties and activity against H₁ receptor antagonist [26]. Clinical trial on *Pippali Rasayana* (a Ayurvedic formulation having piper long as a main constituent) recorded the reduction in cough, wheezing, sputum, dyspnoea on exertion, and nocturnal dyspnoea [27]

FORMULATIONS

Sitopaladi churna is a commonly used formulation for upper respiratory ailment in ayurveda. It contains *Sitopala* (sugar), *Vamasarocana* (*Bambusa arundinaceae* Retz.), fruit of *Pippali* (*Piper longum Linn.*), Seeds of *Ela* (*Amomum subulatum Roxb.*) and *Tvak* (bark of *Cinnamomum zeylanicum Blume.*). It significantly protects the mast cell degranulation in wistar albino rats [28] and inhibits the milk induced leukocytosis showing anti allergic activity [29]. It alsoexhibit antitussive property probably mediated by opioid system and GABA-ergic system [30]. In the patients of uncomplicated bronchitis *Vyaghri haritaki, a* formulation having *Kantakari* (*Solanum surratense*) and *Haritaki*(*Terminalia chebula*) as main ingredient showed mild to moderate relief in productive cough, dyspnoea, nasal congestion respectively [31]. In a clinical trial done on 23 patients of childhood bronchial asthma supports that *Swas Kasa Chintamani Rasa*(a Ayurvedic herbs-mineral preparation) has significant effect in symptom relief in childhood bronchial asthma [32] Table 2.

Table 1: Herbs used in treatment of upper respiratory tract infections								
Herb Name	Study Name	Study Model	Preparation	Dose	Results	Reference		
Vasa (Adhatoda vasica)	In Vivo	Male Haffkine Guinea Pigs Male	Ethanolic Extract	5, 10, 20mg/kg Intravenous	Antitussive activity was recorded on all doses.	[5]		
		Norwegian Rabbits		5mg/kg(i.v.)	Slightly reduced the coughing.			
		Cough induced by aerosol and mechically		20mg/kg(i.v.)	completely inhibited the mechanically induced coughing.			
	In Vivo	Albino mice of either sex Cough induced by SO ₂ (Sulphar dioxide)	Ethanolic extract	200mg/kg (p.o.)	43.02% inhibition of cough	[7]		
	In Vivo	Swiss Albino Mice of Either Sex	Ethyl Acetate extract AV	500mg/kg	81% inhibition of cough reflex at 120min	[8]		
			Methanolic Extract AV	500mg/kg	80% inhibition of cough reflex at 120min			
	In Vivo	Fertile Hen's Egg	MeOH Extract AV	25µg/pellet	15% reduction in inflammation	[33]		
				50µg/pellet	26.67% reduction in inflammation			
				100µg/pellet	64.10% reduction in inflammation			
				200µg/pellet	70% reduction in inflammation			
	Randomized controlled double blind Clinical Trial	Patients of non complicated acute respiratory infections	KanJhang® oral solution (extract of Echinacea purpurea, Adhatoda vasica, Eleutherococcus senticosus)	30ml(15- 25mg/ml) thrice in a day for 6 days	Significant reduction in the frequency of coughing, efficacy of mucous discharge in the respiratory tract and degree of nasal congestion	[9]		
	Open label randomized clinical study	66 patients of Tamak Shwasa	Vasa Avaleha and Vasa Avaleha Granules	Group A Vasa Avaleha Group B Vasa Avaleha Granules 6gm with lukewarm twice a day	25.93% Moderate improvement, 66.67% mild improvement 32.26% Moderate improvement 64.52% mild improvement	[10]		
Pushkarmul (Inula racemosa)	In Vivo	Wistar Rats	Petroleum ether extract	4mg/mL 10mg/mL	Significant antagonist effect on histamine induced contraction, protection against mast cell degranulation shows anti- asthamatic activity.	[12]		

	In Vitro	Goat Tracheal Chain Contraction produced by histamines	Petroleum Ether Extract	4mg/ml 10mg/ml	55.41±3.04 Significant antagonistic effect on histamine induced contraction 48.87±1.36 Exert significant and reduces the	[12]
Yashtimadhu (Glycyrrhiza glabra)	In Vivo	Albino mice of either sex Cough induced by SO ₂	Ethanolic Extract	200mg/kg	contraction Significant anti tussive effect recorded 41.17% cough reflex inhibited.	[34]
	In Vivo	Guinea pigs Cough induced by citric acid	Water Extracted Polymer	50mg/kg b.w.	GG contains arabinogalactan which posses good anti tussive property without having any toxic agent	[16]
	In Vivo	Male ICR Mice Cough Induced by ammonia liquor	Crude extract of licorice	50mg/kg per oral	Licorice compounds liquiritin apioside, liquiritin, liquiritingenin exhibits potent antitussive activity. Reduces the cough by 30-78%	[17]
	Double Blind Randomized Clinical Trial	46 patients with intermittent asthma	ASMATUS having GG	5ml 3 times in a day for 5days	Significantly reduced the frequency of cough and night awakening due to cough	[18]
Bharangi (Clerodendrum serratum)	In Vivo	Mice	Alcoholic extract of C. serratum roots	100 & 200mg/kg (i.p.)	Potent antihistaminic activity reported. Probable action was through inhibition of inflammatory mediators like serotonin, histamine and prostaglandin due to COX inhibition.	[20]
	In Vitro	Goat tracheal tissue was obtained immediately after sacrificing the animal	Ethanolic extract of C. serratum roots	10μg/ml	Icosahydrapicenic acid (IHPA) extracted from ethanolic extract inhibits the contraction produced histamines in goat tracheal chain preparation.	[21]

	Open label single center prospective clinical study	30 Patients of Tamak Shwasa (Acute Excerbation Bronchial asthama)	Bharangi Mool Arka Nebulizer	Nebulization with 5ml three times in a day	Significant reductions were seen in breathlessness, wheezing, difficulty in speech, cough, sputum production, chest tightness.	[22]
Pippali (Piper longum)	In vivo	Guinea pigs Cough was induced by the inhalation of citric acid aerosol	Water Extract of <i>Piper nigrum</i> fruits	50mg/kg (b.w.) (p.o.)	69.4% Suppression of cough exhibit highest antitussive activity due to presence of both pectic polysaccharide and piperine.	[25]
			EtOH Precipitated one EtOH Soluble	50mg/kg (b.w.) (p.o.) 50mg/kg	50.2% suppression of cough Moderate antitussive activity. 38.1%	
	In vitro	Cuince pig	Extract of fruits	(b.w.) (p.o.)	Suppression of cough shows least activity due to lowest piperine content.	[26]
		Guinea pig ileum Contraction was induced by using 10µg/mL of Histamine	of piper longum	100µg/mL	Significantly inhibits the contraction in which shows H ₁ receptor antagonist activity and anti asthmatic properties.	[26]
	Clinical Trial	32 Patients of different respiratory disorders	Pippali Rasayana	2.5gm/day for 45days	Cough, Wheezing, Sputum, Dyspnoea on exertion reduced, Nocturnal Dyspnoea.	[27]

Table 2 Formulations used in treatment of upper respiratory tract infections

Drug Name	Study	Study Model	Preparation	Dose	Results	Reference
	Name					S
Sitopaladi Churna	In Vivo	Wistar Albino	Methanolic	150mg/kg	65-74%	[28]
(combination of Sitopala		Rats	Extract	300mg/kg	protection of	
(sugar), Vamasarocana		Allergy		(p.o.)	mast cell	
(Bambusa arundinaceae		induced by		For 14days	degranulation	
Retz.), fruits of Pippali		compound				
(Piper longum Linn.),		48/80 rats				
Seeds of Ela (Amomum		were				
subulatum Roxb.) and		senstitized				
Tvak (bark of		with s.c.				
CinnamomumZeylanicum		injection of				
Blume.)		the				
		compound				
	In Vivo	Albino rats	Sitopaladi	36mg/0.5ml	Statistically not	[29]
			Churna	(p.o.)	significant	
		Leukocytosis		180mg/0.5ml	Inhibits the	
		induced by		(p.o.)	milk induced	
		milk in a dose			leukocytosis by	
		of 4ml/kg			59.57%	

				360mg/0.5ml (p.o.)	Reduces the milk induced leukocytosis by 65.95%	
	In Vivo	Guinea Pigs Chemicaly cough induced by Citric acid aerosols	Sitopaladi Churna	2.5mg/kg (b.w.) (p.o.) in saline	Cough reduced by 94.28% this antitussive activity probably mediated by Opioid System and GABA-ergic system.	[30]
Vyaghriharitaki Avaleha	Clinica l Trial	Total 66 Patients suffering from uncomplicate d bronchitis	Vyaghriharita ki Avaleha	10gm twice a day with lukewarm water before meal for 12wk	11.48% patients shows marked improvement in the symptoms, 55.74% moderate improvement, 24.59% mild response while 8.20% no significant change. 68.9%, 83.3%,97.6% relief in productive cough, dyspnoea, nasal congestion respectively.	[31]
Swas Kasa Chintamani Rasa	Clinica l Trial	Total 23 patients having symptoms cough, fever, breathlessnes s, running nose, wheezing	Swas Kasa Chintamani Rasa	4 mg/kg/dose Twice in a day in powdered form mixed with Garlic: Ginger: Honey (GGH) [in 1:2:4 ratio] for 45 days.	Findings of this study suggest that SKCR has significant effect in the childhood bronchial asthma though having the history of steroids and bronchodilators	[32]
Indukantha Ghrita	Clinica l Trial	48 Patients of upper respiratory tract infections	Indukantha Ghrita	300mg/kg body weight /day for 28days	79.2% relief in fever, 60.45 relief in cough, 25% in runny nose, 60.4% in sore throat, 10.4% in shortness of breath. Results obtained from the study suggest that it is immune modifier and maintains the homeostasis of immune function in patients of URTI.	[35]

CONCLUSION

Ayurveda is an evidence based medical system. In current health situation, utilising such knowledge for home based preventive approach may have a significant support to health care system. Multiple drugs including Glycyrrhiza glabra (Yashtimadhu), *Piper longum (Pippali*) and *Withania somnifera* (*Ashwagandha*) are under clinical trials for COVID-19 disease. Author suggest above remedies as a prophylactic, preventive or rehabilitative measure to counter upper respiratory tract symptoms of common origin.

ACKNOWLEDGEMENT

Author acknowledge Dr. Trapti Agrawal for her valuable inputs. Author Acknowledge Govt Ayurved college, Raipur, library for support of book access.

CONFLICT OF INTEREST

None

REFERENCES

- 1. Perlman, S., Netland, J. (2009). Coronaviruses post-SARS: update on replication and pathogenesis. Nat. Rev. Microbiol., 7(6):439-50.
- 2. Chen, Y., Liu, Q., Guo, D (2020). Emerging coronaviruses: Genome structure, replication, and pathogenesis. J. Med. Virol., 92(4):418-423.
- 3. Cascella M, Rajnik M, Cuomo A, et al. Features, Evaluation and Treatment Coronavirus (COVID-19). (2020) [Updated 2020 Jul 4]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; Available from: https://www.ncbi.nlm.nih.gov/books/NBK554776/
- 4. Aggarwal, B.B., Prasad, S., Reuter, S., Kannappan, R., R. Yadav, V., Park, B., Hye Kim, J., C. Gupta, S., Phromnoi, K., Sundaram, C., Prasad, S., M. Chaturvedi, M., & Sung, B. (2011). Identification of novel anti-inflammatory agents from ayurvedic medicine for prevention of chronic diseases: "Reverse Pharmacology" and "Bedside to Bench" Approach. Current Drug Targets, 12(11): 1595-1653.
- 5. Dhuley, J. N. (1999). Antitussive effect of Adhatoda vasica extract on mechanical or chemical stimulation-induced coughing in animals. Journal of Ethnopharmacology, 67(3): 361-365.
- 6. Hossain, Md & amp; Hoq, Md. (2016). Therapeutic use of Adhatoda vasica. Asian Journal of Medicaland Biological Research, 2:156.
- 7. Jahan, Y and Siddiqui, H.H. (2012). Study of antitussive potential of *Glycyrrhiza glabra* and *Adhatoda vasica* using a cough model induced by sulphur dioxide gas in mice, International journal of pharmaceutical sciences and research, 3(6):1668-74.
- 8. Srivastava, S and Choudhary G.P. (2016). Anti-tussive activity of ethyl acetate and methanol extracts of *Adhatoda vasica* nees, International Journal Of Pharmaceutical Sciences And Research, 7(10): 4180-83.
- 9. Narimanian, M., Badalyan, M., Panosyan, V., Gabrielyan, E., Panossian, A., Wikman, G., & Wagner, H. (2005). Randomized trial of a fixed combination (KanJang®) of herbal extracts containing Adhatoda vasica, Echinacea purpurea and eleutherococcus senticosus in patients with upper respiratory tract infections. Phytomedicine, 12(8), 539-547.
- 10. Paneliya, A., Patgiri, B., Galib, R., & Prajapati, P. (2015). Efficacy of vasa Avaleha and its granules on Tamaka Shwasa (bronchial asthma): Open-label randomized clinical study. AYU (An International Quarterly Journal of Research in Ayurveda), 36(3), 271.
- 11. Firdous, Q., Bhat, M.F. and Hussain, M. M. (2018). Ethnopharmacology, phytochemistry and biological activity of Inula racemosa HOOK. F: A REVIEW. Int. J. Res. Ayurveda Pharm, 9 (1): 95-102.
- 12. Vadnere, G., Gaud, Ram., Singhai, A.K. & Somani, Rahul (2009). Effect of *Inula racemosa* root extract on various aspects of asthma. Pharmacologyonline, 2: 84-94.
- 13. Shibata, S (2000). A drug over the millennia: pharmacognosy, chemistry, and pharmacology of licorice. Yakugaku Zasshi. 120(10):849-862.
- 14. Sharma, V., Agrawal, R.C. (2013). Glycyrrhiza glabra A plant for thefuture. Mintage journal of Pharmaceutical & amp; Medical Sciences, 2:15-20.
- 15. Shitole, M., and V. Pawar (2019). Study Of Potential Antitussive Activity Of *Glycyrrhiza glabra* Granules By Using A Cough Model Induced By Sulphur Dioxide Gas In Mice. *Asian Journal of Pharmaceutical and Clinical Research*, 12(10): 262-7.
- 16. Saha, S., Nosál'ová, G., Ghosh, D., Flešková, D., Capek, P., & Ray, B. (2011). Structural features and in vivo antitussive activity of the water extracted polymer from Glycyrrhiza glabra. International Journal of Biological Macromolecules, 48(4), 634-638.
- 17. Kuang, Y., Li, B., Fan, J., Qiao, X., Ye, M (2018). Antitussive and expectorant activities of licorice and its major compounds. *Bioorg Med Chem*, 26(1):278-284.
- 18. Javid, A., Motevalli Haghi, N., Emami, S.A, et al (2019). Short-course administration of a traditional herbal mixture ameliorates asthma symptoms of the common cold in children. *Avicenna J Phytomed*, 9(2):126-133.
- 19. Vidya, S.M., Krishna, V., Manjunatha, B.K., Mankani, K.L., Ahmed, M., Singh, S.D (2007). Evaluation of hepatoprotective activity of Clerodendrum serratum L. Indian J Exp Biol, 45(6):538-542.

- 20. Thalla, S., Tammu, J., Pentela, B., Thalla, S.R. (2012). Antiasthmatic activity of alcoholic extract of Clerodendrum serratum induced by ovalbumin. International Journal of Chemical and Pharmaceutical Sciences, 3:83-85.
- 21. Bhujbal, S. S., Nanda, R., Ganu, G. P., Jadhav, S. W., Dongre, P. R., Choudhary, B., Patil, M. J. (2010). Protective Effects of Icosahydropicenic Acid Isolated from the Roots of Clerodendrum serratum (L) Moon on Experimental Allergic Asthma. Journal of Complementary and Integrative Medicine, 7(1). doi:10.2202/1553-3840.1401
- 22. Parayil C.J., Manjunatha A, Priyanka B V. (2015). Efficacy Of Bharangimoola Arka Nebulization Intamaka Shvasa (Acute Exacerbation Ofbronchial Asthma) A Case Series Study, J Res Educ Indian Med, 10(1):90-94
- 23. Zaveri, M., Khandhar, A., Patel, S., Patel, A. (2010). Chemistry and pharmacology of Piper longum L. International Journal Of Pharmaceutical Science Review and Researches, 5(1Article-010
- 24. Kumar, S., Kamboj, J., Suman, & Sharma, S. (2011). Overview for various aspects of the health benefits of piper Longum Linn. Fruit. Journal of Acupuncture and Meridian Studies, 4(2), 134-140.
- 25. Khawasa, S., Nosáľováb, G., Majeea S.K., Ghosha, K., Rajaa, W., Sivováb, V., and Ray, B. (2017). In vivo cough suppressive activity of pectic polysaccharide with arabinogalactan type II side chains of *Piper nigrum* fruits and its synergistic effect with piperine, International Journal of Biological Macromolecules, 99:335-342
- 26. Kaushik, D., Rani, R., Kaushik, P., Sacher, D., & Yadav, J. (2012). In vivo and in vitro antiasthmatic studies of plant piper longum Linn. International Journal of Pharmacology, 8(3), 192-197.
- 27. Bisht, D., Sharma, Y. K., Mehra, B. L. (2009). A Clinical Study To Evaluate The Efficacy Of Pippali Rasayana in Certain Respiratory Disorders, AYU, 30(3):337-341.
- 28. Makhija, I,K., Shreedhara, C.S., Ram, H,N (2013). Mast cell stabilization potential of Sitopaladi churna: An ayurvedic formulation. *Pharmacognosy Res.*5(4):306-308.
- 29. Guatam, P., Vadnere, R., Gaud S., Singhai, A. K., Pathan, E. (2011). Inhibition of immediate allergic reactions by Sitopaladi Churna: An Experimental Study, Pharmacologyonline, 2:514-521
- Pattanayak, P., Panda, S. K., Dash, S., Behera, M., Mishra, S.K (2010). Study Of Anti-Tussive activity of Sitopaladi Churna: A Poly-Herbal Formulation, International Journal Of Pharmaceutical Sciences Review And Research, 4(2): 65.
- 31. Ram, J. P., and Baghel, M.S. (2015). Clinical efficacy of Vaghriharitaki Avaleha In the management of chronic bronchitis Ayu. 36(1): 50–55.
- 32. Kumar Y, Singh BM, Gupta P (2014). Clinical and metabolic markers based study of Swas Kasa Chintamani Rasa (An Ayurvedic herbometallic preparation) in childhood bronchial asthma (Tamak Swas). Int J Green Pharm;8:3744
- 33. Chakraborty A., Brantner, A.H. (2001). Study of alkaloids from *Adhatoda vasica* Nees on their antiinflammtory activity. Phytotherapy Research, 15:532–534.
- 34. Shitole, M., and V. Pawar. (2019). Study Of Potential Antitussive Activity Of *Glycyrrhiza glabra* Granules By Using A Cough Model Induced By Sulphur Dioxide Gas In Mice. *Asian Journal of Pharmaceutical and Clinical Research*, 12(10): 262-7.
- 35. Radhakrishnan, R., George, S. K., Kumar, S., & Balaram, P. (2014). Maintenance of immunological homeostasis byIndukantha Ghrithain patients with recurrent upper respiratory tract Infections-A pilot study. Phytotherapy Research, 28(8), 1252-1259

CITATION OF THIS ARTICLE

R Sahu , M Rani, K Shah, N S Chauhan, P K Gupta. Potential Herbs for Upper Respiratory Illness and their Current Utility .Bull. Env. Pharmacol. Life Sci., Vol 9[6] May 2020 : 72-79