Bulletin of Environment, Pharmacology and Life Sciences

Bull. Env. Pharmacol. Life Sci., Vol 9[9] August 2020 : 45-49 ©2020 Academy for Environment and Life Sciences, India Online ISSN 2277-1808 Journal's URL:http://www.bepls.com CODEN: BEPLAD Global Impact Factor 0.876 Universal Impact Factor 0.9804 NAAS Rating 4.95

ORIGINAL ARTICLE

OPEN ACCESS

Assay of Fusidic acid 1% w/w Viscous Eye Drops by HPLC

Abhijit A. Sonawane*, Kalyani J. Waghchoure, Suresh L. Jadhav, Shankar M. Dhobale, Dushyant D. Gaikwad

Vishal Institute of Pharmaceutical Education and Research, Ale, Maharashtra, India. Email : kalyaniwaghchoure@gmail.com

ABSTRACT

A simple, precise and accurate method was developed and validated for analysis of Fusidic Acid 1% w/w Viscous eye drop formulation. An isocratic HPLC analysis was performed on Inertsil ODS column (4.6mm × 150 mm × 3.5 μ or equivalent). The compound was separated with the mixture of Methanol, Ortho-phosphoric acid and Acetonitrile as mobile phase ,at flow of 1.5 mL/min. UV detection was performed at 235 nm using photo diode array detection. The retention time was found to be 19.5 min. The system suitability parameters such as theoretical plate count, tailing and percentage RSD between six standard injections were within the limit. The method was validated according to ICH guidelines. The developed method can be applicable for routine quantitative analysis. **Keywords:** Fusidic acid, HPLC, Methanol, Ortho-phosphoric acid and Acetonitrile

Received 13.04.2020

Revised 18.05.2020

Accepted 11.07.2020

INTRODUCTION

Fusidic acid (FA) is a bacteriostatic antibiotic used in the treatment of primary and secondary skin infections caused by sensitive strains of *S. aureus*, Streptococci species, and *C. Minutissimum*. Fusidic acid is the steroidal antibiotic used to treat Gram positive infections. It acts by preventing the translocation of peptidyl tRNA. Fusidic acid2 (2), chemically is 2-(16-acetyloxy-3,11-dihydroxy-4,8,10,14-tetramethyl-2,3,4,5,6,7,9,11,12,13,15,16-dodecahydro-1H-cyclopenta[a]phenanthren-

17-yelidene)-6-methyl-hept-5-enoic acid. [1,2]

Fusidic acid is active in vitro against *Staphylococcus aureus*, most coagulase-positive staphylococci, Betahemolytic streptococci, Corynebacterium species, and most clostridium species. Fusidic acid has no known useful activity against enterococci or most Gram-negative bacteria (except Neisseria, Moraxella, Legionella pneumophila, and Bacteroides fragilis). Fusidic acid is active in vitro and clinically against Mycobacterium leprae but has only marginal activity against Mycobacterium tuberculosis.[3,4]

Figure1:- Chemical structure of fusidic acid

MATERIAL AND METHODS

Fusidic Acid standard:

Use the standard as such and use % potency on as is basis for calculations. Protect from light, preserve at a temperature of 2°C-8°C.

Reagents and Material:

Name of Reagent and	Grade Make			
Material				
Water	HPLC			
Methanol	HPLC	Rankem		
Acetonitrile	HPLC	Rankem		
Ortho Phosphoric Acid	Emparta®	Merck		
88%				
0.45µ Nylon membrane		Millipore Milex-HN		
syringe filter				

Instrument and Equipment:

High performance liquid chromatography Sonicator

Analytical Balance

Centrifuge

Preparation of 5 g/L solution of Ortho-phosphoric acid:

Dilute 5 gm of Ortho-phosphoric acid to 1000 mL with water, mix well.

Preparation of Mobile Phase A:

Prepare a mixture of Methanol, 5 g/L solution of Ortho-phosphoric acid solution and Acetonitrile in the ratio of 20:40:40 v/v/v respectively. Mix well, sonicate to degas it.

Preparation of Mobile Phase B:

Prepare a mixture of Methanol, 5 g/L solution of Ortho-phosphoric acid solution and Acetonitrile in the ratio of 20: 10:70 v/v/v respectively. Mix well, sonicate to degas it.

Preparation of Solvent Mixture:(Diluent)

Prepare a mixture of Methanol, 5 g/L solution of Ortho-phosphoric acid solution and Acetonitrile in the ratio of 10:40:50 v/v/v respectively. Mix well.

Chromatographic condition:

Column	Inertsil ODS, 4.6 mm x 150 mm, 3.5µ or equivalent
Flow Rate	1.0 mL/min
Injection Volume	20 μL
Wavelength	235 nm
Column Temp	30°C
Sample Temp	10°c
Retention time	19.5 minutes
Seal wash	Water : Acetonitrile (90: 1 0)
Needle wash	Water: Acetonitrile (10:90)

Preparation of gradient:

Time in Minutes	Mobile Phase A%	Mobile Phase B%
0	100	0
3	100	0
28	0	100
33	0	100
35	100	0
45	100	0

Preparation of Standard Solution:

Weigh accurately about 80 mg of Fusidic Acid standard and transfer in to 100 mL volumetric flask. Add 60 mL of solvent mixture, sonicate to dissolve and dilute up to the mark with solvent mixture. Note: Prepare standard solution in duplicate as lst standard solution and 2nd standard solution. (Concentration of Fusidic Acid: 800 ppm).

Preparation of Sample Solution:

Weigh accurately 2000 mg of sample (Equivalent to 20 mg of Fusidic acid) in to 25 mL volumetric flask, add 15 mL of solvent mixture, sonicate for 60 minutes, dilute up to the mark with solvent mixture. Centrifuge the sample at 3000 rpm for 5 minutes and then filter through 0.45μ Nylon membrane syringe filter. (Concentration of Fusidic Acid: 800 ppm).

Procedure:

Separately inject equal volumes of Blank (diluent), 1st Standard solution of Fusidic Acid (Six replicates) and 2nd Standard solution of Fusidic Acid (Two replicates) and Sample solution in duplicate.

Evaluation of System Suitability:

Inject the Fusidic Acid I st Standard solution six times.

The relative standard deviation for peak areas of Fusidic Acid in six replicate injections should not be more than 2.0%.

The Tailing factor for Fusidic Acid peak in standard should not be more than 1.5.

The Theoretical plates for Fusidic Acid in standard should not be less than 2000.

The Correlation between I st standard solution and 2nd standard solution should be range of 98.0% to 102.0%.

Correlation formula is mention below.

 $\begin{array}{ccc} AS_2 & WS_1 \\ \hline \\ AS_1 & WS_2 \end{array} 100$

Where, AS1 WS2

Correlation=

AS2 : Average area from two replicates of2"d standard preparation.

AS1 : Average area from six replicates of 1 st standard preparation.

WS1 : Weight of standard in mg taken for preparation of I st standard.

WS2 : Weight of standard in mg taken for preparation of 2nd standard.

Calculation:

Calculate the %Assay ofFusidic Acid in Eye drop as given below:

$0/\Delta ssav =$	AT WS		25	Р	100	
70/133ay -	X	X	X	X	X	Avg wt.
	AS	100	SW	100	LC	

Where,

AT: Peak area of Fusidic Acid in the chromatogram of sample solution
AS: Average Peak area of Fusidic Acid in the chromatogram of Standard solution.
WS: Weight of Fusidic Acid standard in mg.
LC: Label claim of Fusidic Acid in %
P: % Potency of Fusidic Acid standard on as is basis.

SW: Weight of Sample in mg. Avg Wt: Average Weight in mg

RESULTS AND DISCUSSION Chromatogram for Blank

Figure 2:- HPLC Chromatogram of Blank Sample

Chromatogram for Standard

Figure 3:- HPLC Chromatogram of Standard Sample of Fusidic acid

Chromatogram for Samples

300	8023_14_DE	_R9_16092	_	Semple_11_1				Wavelength-236 nm WVL:236 nm			
200	-				1985						
100 c		麗生		が開始	18 MPH	23.00 mp-L	「大田市市」	7440 CB / 7	23.17 UMB		
-60	1										min
	0.0 5	0 10	0.0 15	0	20.0	26.0		30.0	35.0	40.0	45.0
No.	Ret.Time	P	seak Name	YSTE	Type	Plates USP	ESU	Talling	Resolution	ĸ.	Area
1	2.19		Placebo1		BMB	3965		1,11	n.a.	2.13	0.043
2	2.69		Placebo2	-	BMB	4432		0.93	3.32	2.85	0.326
3	3,01		Blenk1		BMB	7878		1.19	2.11	3.30	0.027
4	3.60		Placebo3		BMB	6272	_	0.95	3.74	4.14	0.016
5	5.04		Placebo4		BMB	8658	+	1.26	7,23	6.20	0.007
÷.	8.22		Imp-A		BM	12188		1.07	12,36	10.74	0.227
6	8.07		Link?		DAD	26530	+	1.36	1.34	11.30	0.010
8	111.10		Ima B		BMB	16879	+	1.00	7.60	14.92	0.225
10	11.77	-	Unk3		BM	8762	-	1.00	1.45	15.81	0.069
11	12.00		Imp-C		Mb	13309	-	D.8.	0.51	16.14	0.109
12	12.39		Unk4		DMB	45939		1.27	1.20	16.70	0.012
13	12.82		Imp-D		BMB	17833		1.02	1.41	17.31	0.124
14	13.39		Imp-N		BMb	26489	_	0.80	1.59	18.12	0.084
10	13,69		Imp-F		BMB	32149	+	1.74	0.96	18.55	0.098
17	16.52		Uniko		DIMID	30100		1.24	2.00	22.40	0.023
10	16.75		Liokő		- M	0.0	+	0.0	0.02	22.93	0.143
19	17.21	~~~	Imp-H		MB	25719	+	0.0	D.Q.	23.58	0.063
20	18.87		Imp-I		BM	31877		n.a.	3.91	25.96	0.175
21	19.69	F	usidic acid		MB	44810		1.17	2.05	27.12	185.714
22	22.93		Imp-K		BMB	64684	_	0.86	8.48	31.75	0.061
_				-							
3	23.83		Imp-L		BMB	62011	(.94	2.34	33.05	0.067
4	26.49		Imp-M		BMB	85814	1	1.10	7.13	36.84	0.706
5	27.85		Unk7		BMB	114508	1	1.16	3.94	38.78	0.040
5 T	33 17		Link8		BMB	111156		1 15	14.65	46.39	0.031

Total:

Figure 4:- HPLC Chromatogram of Different Samples of Fusidic acid

METHOD VALIDATION

Linearity

The linearity parameter was confirmed in the concentration range of 1%, wherein the calibration equation and correlation coefficient were also determined. In the statistical analysis, results showed that the method had satisfactory linear regression because the p-value was also good.

189.130

Precision

In analyzing the method by repeatability and intermediate precision, the RSDs of areas obtained in all concentrations analyzed were no more than 2%, indicating good precision of the chromatographic method.

Accuracy

The recovery test showed that the method had satisfactory accuracy to measure fusidic acid in eye drops, since the percentage value of the average recovery was close to 100%, as shown in figure.

Discussion

The proposed HPLC method for the quantification of fusidic acid in the form of pharmaceutical eye drops is fast, simple, efficient, economical, and sensitive compared to other methods described in the literature, and is stability indicating. While co-relating it with works done by different scientists, we found that all parameters were in accordance with the acceptance criteria for the validation of methods established by the ICH and FDA. Therefore, the validated method could easily be applied to the routine analysis of fusidic acid in the quality control of pharmaceutical sciences.

CONCLUSION

A HPLC method was successfully developed for the Assay of Fusidic acid 1%w/w viscous eye drops. The HPLC method was is quite simple, accurate, precise, reproducible and sensitive. It is also advised for possible use in routine quality control analysis.

REFERENCES

- 1. The United States Pharmacopeia and National Formulary, (2011). The Official Compendia of Standards, Asian ed., USP 34-NF 29, Rockvill, MD: The United States Pharmacopeial Convention Inc.
- 2. J.D. Fegade, H.P. Mehta, R.Y. Chaudhari, V.R. Patil (2009). Simultaneous spectrophotometric estimation of Ofloxacin and Ketorolac Tromethamine in ophthalmic dosage form Int. J. Chem. Tech. Res., 1 (2), pp. 189-194.
- 3. ICH, (2005). International Conference on Harmonisation (ICH) Q2 (R1): Validation of Analytical Procedures: Test and Methodology, Geneva, Switzerland.
- 4. British Pharmaceutical Codex (1973) Pharmaceutical Society of Great Britain, The Pharmaceutical Press, London, 689.
- 5. Higuchi, T., and C.S. Bias (1953.) J. Am. Pharm. Assoc. Sci. Ed. 43, 707–714.
- 6. Lebelle, H.J., D.C. Young, K.C. Graham and W.L. Wilson (1979). J. Chromatogr. 170, 282–287.
- 7. Szulczewski, D., andF. Eng (1975). Analytical profiles of Drug substances, Volume 4 (Florey, K., Ed.). Academic Press, New York, 47–90.
- 8. J. Williamson, F. Russell, W. M. Doig, and R. W. W. Paterson, (1970). Br. J. Ophthalmol., 54,126.
- 9. Nishant Goswami, V.Rama Mohan Gupta, Hitesh A. Jogia, (2013). Development and Validation of a Novel Stability-Indicating RP-HPLC Method for the Simultaneous Determination of Halometasone, Fusidic Acid, Methylparaben, and Propylparaben in Topical Pharmaceutical Formulation, Sci Pharm. 81(2): 505–518.
- 10. Jian chen, W. Fei,Z.Pang, L.Tang, (2004). Determination and stability of FK506 eye drops by HPLC, Chinese Ophthalmic Research 22(4):355-357.

CITATION OF THIS ARTICLE

Abhijit A. Sonawane, Kalyani J. Waghchoure, Suresh L. Jadhav, Shankar M. Dhobale, Dushyant D. Gaikwad. Assay of Fusidic acid 1% w/w Viscous Eye Drops by HPLC. Bull. Env. Pharmacol. Life Sci., Vol 9[9] August 2020 : 45-49